找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Random Fields for Spatial Data Modeling; A Primer for Scienti Dionissios T. Hristopulos Textbook 2020 Springer Nature B.V. 2020 Conditional

[复制链接]
查看: 7558|回复: 63
发表于 2025-3-21 19:02:39 | 显示全部楼层 |阅读模式
书目名称Random Fields for Spatial Data Modeling
副标题A Primer for Scienti
编辑Dionissios T. Hristopulos
视频video
概述Provides a bridge between statistical physics and spatial statistics and underlines links between geostatistics, applied mathematics and machine learning.Presents a unique approach, developed by the a
丛书名称Advances in Geographic Information Science
图书封面Titlebook: Random Fields for Spatial Data Modeling; A Primer for Scienti Dionissios T. Hristopulos Textbook 2020 Springer Nature B.V. 2020 Conditional
描述This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. .The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods).  The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means ofmodels based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian rand
出版日期Textbook 2020
关键词Conditional Simulation; Gaussian Statistical Field Theory; Local Interaction Models; Random Fields; Spat
版次1
doihttps://doi.org/10.1007/978-94-024-1918-4
isbn_ebook978-94-024-1918-4Series ISSN 1867-2434 Series E-ISSN 1867-2442
issn_series 1867-2434
copyrightSpringer Nature B.V. 2020
The information of publication is updating

书目名称Random Fields for Spatial Data Modeling影响因子(影响力)




书目名称Random Fields for Spatial Data Modeling影响因子(影响力)学科排名




书目名称Random Fields for Spatial Data Modeling网络公开度




书目名称Random Fields for Spatial Data Modeling网络公开度学科排名




书目名称Random Fields for Spatial Data Modeling被引频次




书目名称Random Fields for Spatial Data Modeling被引频次学科排名




书目名称Random Fields for Spatial Data Modeling年度引用




书目名称Random Fields for Spatial Data Modeling年度引用学科排名




书目名称Random Fields for Spatial Data Modeling读者反馈




书目名称Random Fields for Spatial Data Modeling读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:12:43 | 显示全部楼层
发表于 2025-3-22 03:02:33 | 显示全部楼层
Additional Topics of Random Field Modeling, types of anisotropy, and the description of the joint dependence of random fields at more than two points. Ergodicity, isotropy and anisotropy are properties that have significant practical interest for the modeling of spatial data. On the other hand, the joint .-point dependence is a more advanced
发表于 2025-3-22 08:31:42 | 显示全部楼层
Geometric Properties of Random Fields,ian random functions is to a large extent determined by the mean and the two-point correlation functions. The classical text on the geometry of random fields is the book written by Robert Adler [.]. The basic elements of random field geometry are contained in the technical report by Abrahamsen [.].
发表于 2025-3-22 10:03:57 | 显示全部楼层
发表于 2025-3-22 13:45:31 | 显示全部楼层
Random Fields Based on Local Interactions,ective is useful, because it can lead to computationally efficient methods for spatial prediction, while it is also related with Markovian random fields. In addition, it enables the calculation of new forms of covariance functions and provides a link with ..
发表于 2025-3-22 20:31:46 | 显示全部楼层
发表于 2025-3-22 21:46:14 | 显示全部楼层
Spatial Prediction Fundamentals,ble spatial model and the “best” values for the parameters of the model. Parameter estimation is not necessary for certain simple deterministic models (e.g., nearest neighbor method), since such models do not involve any free parameters. . is then used to choose the “optimal model” (based on some sp
发表于 2025-3-23 02:56:57 | 显示全部楼层
More on Spatial Prediction,h generalizations include the application of ordinary kriging to . that can handle non-stationary data, as well as the methods of . and . that incorporate deterministic trends in the linear prediction equation [.]. . allows combining multivariate information in the prediction equations. Various . of
发表于 2025-3-23 06:25:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 13:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表