找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Random Fields and Geometry; Robert J. Adler,Jonathan E. Taylor Book 2007 Springer-Verlag New York 2007 Area.Gaussian process.Volume.astrop

[复制链接]
查看: 25547|回复: 54
发表于 2025-3-21 16:14:25 | 显示全部楼层 |阅读模式
书目名称Random Fields and Geometry
编辑Robert J. Adler,Jonathan E. Taylor
视频video
概述Recasts old topics in random fields by following a completely new way of handling both geometry and probability.Significant exposition of the work of others in the field.Excellent reference work as we
丛书名称Springer Monographs in Mathematics
图书封面Titlebook: Random Fields and Geometry;  Robert J. Adler,Jonathan E. Taylor Book 2007 Springer-Verlag New York 2007 Area.Gaussian process.Volume.astrop
描述Since the term “random ?eld’’ has a variety of different connotations, ranging from agriculture to statistical mechanics, let us start by clarifying that, in this book, a random ?eld is a stochastic process, usually taking values in a Euclidean space, and de?ned over a parameter space of dimensionality at least 1. Consequently, random processes de?ned on countable parameter spaces will not 1 appear here. Indeed, even processes on R will make only rare appearances and, from the point of view of this book, are almost trivial. The parameter spaces we like best are manifolds, although for much of the time we shall require no more than that they be pseudometric spaces. With this clari?cation in hand, the next thing that you should know is that this book will have a sequel dealing primarily with applications. In fact, as we complete this book, we have already started, together with KW (Keith Worsley), on a companion volume [8] tentatively entitled RFG-A,or Random Fields and Geometry: Applications. The current volume—RFG—concentrates on the theory and mathematical background of random ?elds, while RFG-A is intended to do precisely what its title promises. Once the companion volume is publ
出版日期Book 2007
关键词Area; Gaussian process; Volume; astrophysics; differential geometry; geometry; probability
版次1
doihttps://doi.org/10.1007/978-0-387-48116-6
isbn_softcover978-1-4419-2369-1
isbn_ebook978-0-387-48116-6Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag New York 2007
The information of publication is updating

书目名称Random Fields and Geometry影响因子(影响力)




书目名称Random Fields and Geometry影响因子(影响力)学科排名




书目名称Random Fields and Geometry网络公开度




书目名称Random Fields and Geometry网络公开度学科排名




书目名称Random Fields and Geometry被引频次




书目名称Random Fields and Geometry被引频次学科排名




书目名称Random Fields and Geometry年度引用




书目名称Random Fields and Geometry年度引用学科排名




书目名称Random Fields and Geometry读者反馈




书目名称Random Fields and Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:33:38 | 显示全部楼层
发表于 2025-3-22 02:16:02 | 显示全部楼层
发表于 2025-3-22 07:05:12 | 显示全部楼层
Integral GeometryOur aim in this chapter is to develop a framework for handling ., which we now redefine in a nonstochastic framework.
发表于 2025-3-22 11:03:47 | 显示全部楼层
发表于 2025-3-22 13:24:26 | 显示全部楼层
Random Fields on ManifoldsIn essence, this chapter will repeat, for random fields on manifolds, what we have already achieved in the Euclidean setting.
发表于 2025-3-22 19:54:58 | 显示全部楼层
Mean Intrinsic VolumesIn the preceding two chapters we devoted a considerable amount of energy to computing the mean Euler characteristics of the excursion sets of smooth Gaussian fields. However, we know from both Chapters 6 and 7 that the Euler characteristic is but one of the family of geometric quantifiers known as the Lipschitz–Killing curvatures.
发表于 2025-3-23 01:07:08 | 显示全部楼层
Non-Gaussian GeometryThis final chapter is, for two reasons, somewhat of an outlier as far as this book is concerned.
发表于 2025-3-23 01:52:52 | 显示全部楼层
发表于 2025-3-23 06:10:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 23:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表