找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Random Effect and Latent Variable Model Selection; David B. Dunson Book 2008 Springer-Verlag New York 2008 Factor analysis.Generalized lin

[复制链接]
查看: 23851|回复: 37
发表于 2025-3-21 16:24:26 | 显示全部楼层 |阅读模式
书目名称Random Effect and Latent Variable Model Selection
编辑David B. Dunson
视频video
概述Practically motivated and clear overview of methods for selecting random effects..Leading researchers in the field describe how to appropriately test variance components equal to zero..Bayesian and fr
丛书名称Lecture Notes in Statistics
图书封面Titlebook: Random Effect and Latent Variable Model Selection;  David B. Dunson Book 2008 Springer-Verlag New York 2008 Factor analysis.Generalized lin
描述Random Effect and Latent Variable Model Selection In recent years, there has been a dramatic increase in the collection of multivariate and correlated data in a wide variety of ?elds. For example, it is now standard pr- tice to routinely collect many response variables on each individual in a study. The different variables may correspond to repeated measurements over time, to a battery of surrogates for one or more latent traits, or to multiple types of outcomes having an unknown dependence structure. Hierarchical models that incorporate subje- speci?c parameters are one of the most widely-used tools for analyzing multivariate and correlated data. Such subject-speci?c parameters are commonly referred to as random effects, latent variables or frailties. There are two modeling frameworks that have been particularly widely used as hierarchical generalizations of linear regression models. The ?rst is the linear mixed effects model (Laird and Ware , 1982) and the second is the structural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors
出版日期Book 2008
关键词Factor analysis; Generalized linear model; Latent variable model; Latent variables; Likelihood; Variance;
版次1
doihttps://doi.org/10.1007/978-0-387-76721-5
isbn_softcover978-0-387-76720-8
isbn_ebook978-0-387-76721-5Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer-Verlag New York 2008
The information of publication is updating

书目名称Random Effect and Latent Variable Model Selection影响因子(影响力)




书目名称Random Effect and Latent Variable Model Selection影响因子(影响力)学科排名




书目名称Random Effect and Latent Variable Model Selection网络公开度




书目名称Random Effect and Latent Variable Model Selection网络公开度学科排名




书目名称Random Effect and Latent Variable Model Selection被引频次




书目名称Random Effect and Latent Variable Model Selection被引频次学科排名




书目名称Random Effect and Latent Variable Model Selection年度引用




书目名称Random Effect and Latent Variable Model Selection年度引用学科排名




书目名称Random Effect and Latent Variable Model Selection读者反馈




书目名称Random Effect and Latent Variable Model Selection读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:12:19 | 显示全部楼层
Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models
发表于 2025-3-22 01:41:46 | 显示全部楼层
发表于 2025-3-22 07:06:49 | 显示全部楼层
发表于 2025-3-22 10:53:49 | 显示全部楼层
Bayesian Variable Selection in Generalized Linear Mixed Models
发表于 2025-3-22 14:53:12 | 显示全部楼层
发表于 2025-3-22 20:20:45 | 显示全部楼层
Bayesian Model Comparison of Structural Equation Models
发表于 2025-3-23 01:03:31 | 显示全部楼层
Bayesian Model Selection in Factor Analytic Models
发表于 2025-3-23 02:42:35 | 显示全部楼层
0930-0325 uctural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors 978-0-387-76720-8978-0-387-76721-5Series ISSN 0930-0325 Series E-ISSN 2197-7186
发表于 2025-3-23 09:21:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-20 04:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表