用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ramanujan’s Notebooks; Part I Bruce C. Berndt Book 1985 Springer Science+Business Media New York 1985 calculus.exponential function.transfo

[复制链接]
查看: 26038|回复: 44
发表于 2025-3-21 19:41:45 | 显示全部楼层 |阅读模式
书目名称Ramanujan’s Notebooks
副标题Part I
编辑Bruce C. Berndt
视频videohttp://file.papertrans.cn/822/821013/821013.mp4
图书封面Titlebook: Ramanujan’s Notebooks; Part I Bruce C. Berndt Book 1985 Springer Science+Business Media New York 1985 calculus.exponential function.transfo
描述Srinivasa Ramanujan is, arguably, the greatest mathematicianthat India has produced. His story is quite unusual:although he had no formal education inmathematics, hetaught himself, and managed to produce many important newresults. With the support of the English number theorist G.H.Hardy, Ramanujan received a scholarship to go to Englandand studymathematics. He died very young, at the age of 32,leaving behind three notebooks containing almost 3000theorems, virtually all without proof. G.H. Hardy andothers strongly urged that notebooks be edited andpublished, and the result is this series of books. Thisvolume dealswith Chapters 1-9 of Book II; each theorem iseither proved, or a reference to a proof is given.
出版日期Book 1985
关键词calculus; exponential function; transformation
版次1
doihttps://doi.org/10.1007/978-1-4612-1088-7
isbn_softcover978-1-4612-7007-2
isbn_ebook978-1-4612-1088-7
copyrightSpringer Science+Business Media New York 1985
The information of publication is updating

书目名称Ramanujan’s Notebooks影响因子(影响力)




书目名称Ramanujan’s Notebooks影响因子(影响力)学科排名




书目名称Ramanujan’s Notebooks网络公开度




书目名称Ramanujan’s Notebooks网络公开度学科排名




书目名称Ramanujan’s Notebooks被引频次




书目名称Ramanujan’s Notebooks被引频次学科排名




书目名称Ramanujan’s Notebooks年度引用




书目名称Ramanujan’s Notebooks年度引用学科排名




书目名称Ramanujan’s Notebooks读者反馈




书目名称Ramanujan’s Notebooks读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:39:47 | 显示全部楼层
发表于 2025-3-22 03:19:24 | 显示全部楼层
http://image.papertrans.cn/r/image/821013.jpg
发表于 2025-3-22 08:19:50 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-1088-7calculus; exponential function; transformation
发表于 2025-3-22 12:47:14 | 显示全部楼层
发表于 2025-3-22 15:23:48 | 显示全部楼层
发表于 2025-3-22 18:15:33 | 显示全部楼层
Magic Squares,r constructing certain rectangular arrays of natural numbers are given. Most of Ramanujan’s attention is devoted to constructing magic squares. A magic square is a square array of (usually distinct) natural numbers so that the sum of the numbers in each row, column, or diagonal is the same. In some
发表于 2025-3-22 21:49:41 | 显示全部楼层
Combinatorial Analysis and Series Inversions,s. Another primary theme in Chapter 3 revolves around series expansions of various types. However, the deepest and most interesting result in Chapter 3 is Entry 10, which separates the two main themes but which has some connections with the former. Entry 10 offers a highly general and potentially ve
发表于 2025-3-23 03:01:34 | 显示全部楼层
Iterates of the Exponential Function and an Ingenious Formal Technique,ein the Bell numbers, single-variable Bell polynomials, and related topics are studied. Recall that the Bell numbers .(.), 0 ≤ . ≤ ∞, may be defined by They were first thoroughly studied in print by Bell [1], [2] approximately 25–30 years after Ramanujan had derived several of their properties in th
发表于 2025-3-23 07:21:04 | 显示全部楼层
Eulerian Polynomials and Numbers, Bernoulli Numbers, and the Riemann Zeta-Function,rity pertain to Bernoulli numbers, Euler numbers, Eulerian polynomials and numbers, and the Riemann zeta-function. As is to be expected, most of these results are not new. The geneses of Ramanujan’s first published paper [4] (on Bernoulli numbers) and fourth published paper [7] (on sums connected wi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-28 04:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表