找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ramanujan‘s Lost Notebook; Part III George E. Andrews,Bruce C. Berndt Book 2012 Springer Science+Business Media New York 2012 Ramanujan tau

[复制链接]
查看: 44396|回复: 45
发表于 2025-3-21 16:46:54 | 显示全部楼层 |阅读模式
书目名称Ramanujan‘s Lost Notebook
副标题Part III
编辑George E. Andrews,Bruce C. Berndt
视频video
概述Third volume of a series of five volumes including some of Ramanujan‘s deepest work in the last year of his life.Contains material of which mathematicians currently lack a complete understanding.Focus
图书封面Titlebook: Ramanujan‘s Lost Notebook; Part III George E. Andrews,Bruce C. Berndt Book 2012 Springer Science+Business Media New York 2012 Ramanujan tau
描述.In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge to examine the papers of the late G.N. Watson.  Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan‘s lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven‘s tenth symphony..This volume is the third of five volumes that the authors plan to write on Ramanujan’s lost notebook and other manuscripts and fragments found in The Lost Notebook and Other Unpublished Papers, published by Narosa in 1988.  The ordinary partition function p(n) is the focus of this third volume. In particular, ranks, cranks, and congruences for p(n) are in the spotlight. Other topics include the Ramanujan tau-function, the Rogers–Ramanujan functions, highly composite numbers, and sums of powers of theta functions..Reviewfrom the second volume:."Fans of Ramanujan‘s mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published
出版日期Book 2012
关键词Ramanujan tau-Function; Rogers–Ramanujan functions; highly composite numbers; ordinary partition functi
版次1
doihttps://doi.org/10.1007/978-1-4614-3810-6
isbn_softcover978-1-4899-9497-4
isbn_ebook978-1-4614-3810-6
copyrightSpringer Science+Business Media New York 2012
The information of publication is updating

书目名称Ramanujan‘s Lost Notebook影响因子(影响力)




书目名称Ramanujan‘s Lost Notebook影响因子(影响力)学科排名




书目名称Ramanujan‘s Lost Notebook网络公开度




书目名称Ramanujan‘s Lost Notebook网络公开度学科排名




书目名称Ramanujan‘s Lost Notebook被引频次




书目名称Ramanujan‘s Lost Notebook被引频次学科排名




书目名称Ramanujan‘s Lost Notebook年度引用




书目名称Ramanujan‘s Lost Notebook年度引用学科排名




书目名称Ramanujan‘s Lost Notebook读者反馈




书目名称Ramanujan‘s Lost Notebook读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:21:16 | 显示全部楼层
发表于 2025-3-22 02:03:01 | 显示全部楼层
发表于 2025-3-22 04:48:20 | 显示全部楼层
发表于 2025-3-22 11:32:59 | 显示全部楼层
Ranks and Cranks, Part III,in prime importance. In this chapter, we examine ten tables of congruences satisfied by the coefficients of the generating function for cranks. In contrast to the well-known congruences satisfied by the partition function .(.), each of these tables has only a finite set of values, which Ramanujan re
发表于 2025-3-22 16:36:16 | 显示全部楼层
发表于 2025-3-22 17:13:24 | 显示全部楼层
Theorems about the Partition Function on Pages 189 and 182,) and .(7.+5)≡0 (mod 7). One of Ramanujan’s proofs hinges upon the beautiful identity . which is given on page 189. We provide a more detailed rendition of the proof given by Ramanujan, as well as a similarly beautiful identity yielding the congruence .(7.+5)≡0 (mod 7). On both pages, Ramanujan exam
发表于 2025-3-23 01:09:29 | 显示全部楼层
发表于 2025-3-23 03:54:58 | 显示全部楼层
Highly Composite Numbers,teger .<., it happens that .(.)<.(.), where .(.) is the number of divisors of .. In the notes of Ramanujan’s ., the editors relate, “The paper, long as it is, is not complete.” Fortunately, the large remaining portion of the paper was not discarded. It was first set into print by Jean-Louis Nicolas
发表于 2025-3-23 08:37:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 10:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表