找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ramanujan Summation of Divergent Series; Bernard Candelpergher Book 2017 Springer International Publishing AG 2017 Ramanujan.Divergent.Ser

[复制链接]
查看: 42345|回复: 35
发表于 2025-3-21 18:54:48 | 显示全部楼层 |阅读模式
书目名称Ramanujan Summation of Divergent Series
编辑Bernard Candelpergher
视频video
概述Provides a clear and rigorous exposition of Ramanujan‘s theory of divergent series.A special chapter is devoted to an algebraic formalism unifying the most important summation processes.Only little ba
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Ramanujan Summation of Divergent Series;  Bernard Candelpergher Book 2017 Springer International Publishing AG 2017 Ramanujan.Divergent.Ser
描述The aim of this monograph is to give a detailed exposition of the summation method that Ramanujan uses in Chapter VI of his second Notebook. This method, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical evaluation, a formula in terms of convergent series is provided by the use of Newton interpolation. The relation with other summation processes such as those of Borel and Euler is also studied. Finally, in the last chapter, a purely algebraic theory is developed that unifies all these summation processes. This monograph is aimed at graduate students and researchers who have a basic knowledge of analytic function theory.
出版日期Book 2017
关键词Ramanujan; Divergent; Series; Summation; Euler-MacLaurin formula; Borel Summation; Euler Summation
版次1
doihttps://doi.org/10.1007/978-3-319-63630-6
isbn_softcover978-3-319-63629-0
isbn_ebook978-3-319-63630-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Ramanujan Summation of Divergent Series影响因子(影响力)




书目名称Ramanujan Summation of Divergent Series影响因子(影响力)学科排名




书目名称Ramanujan Summation of Divergent Series网络公开度




书目名称Ramanujan Summation of Divergent Series网络公开度学科排名




书目名称Ramanujan Summation of Divergent Series被引频次




书目名称Ramanujan Summation of Divergent Series被引频次学科排名




书目名称Ramanujan Summation of Divergent Series年度引用




书目名称Ramanujan Summation of Divergent Series年度引用学科排名




书目名称Ramanujan Summation of Divergent Series读者反馈




书目名称Ramanujan Summation of Divergent Series读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:46:39 | 显示全部楼层
https://doi.org/10.1007/978-3-319-63630-6Ramanujan; Divergent; Series; Summation; Euler-MacLaurin formula; Borel Summation; Euler Summation
发表于 2025-3-22 02:19:31 | 显示全部楼层
发表于 2025-3-22 06:03:04 | 显示全部楼层
Dependence on a Parameter,In this chapter we give three fundamental results on the Ramanujan summation of series depending on a parameter.
发表于 2025-3-22 11:15:55 | 显示全部楼层
Bernard CandelpergherProvides a clear and rigorous exposition of Ramanujan‘s theory of divergent series.A special chapter is devoted to an algebraic formalism unifying the most important summation processes.Only little ba
发表于 2025-3-22 16:27:10 | 显示全部楼层
发表于 2025-3-22 18:39:50 | 显示全部楼层
发表于 2025-3-23 00:34:42 | 显示全部楼层
发表于 2025-3-23 04:42:51 | 显示全部楼层
Book 2017od, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical ev
发表于 2025-3-23 07:06:22 | 显示全部楼层
Ramanujan Summation,hird section we interpret this constant as the value of a precise solution of a difference equation. Then we can give in Sect. . a rigorous definition of the Ramanujan summation and its relation to the usual summation for convergent series.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 02:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表