找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: R Data Science Quick Reference; A Pocket Guide to AP Thomas Mailund Book 20191st edition Thomas Mailund 2019 R.data science.tidyr.analytics

[复制链接]
查看: 13804|回复: 53
发表于 2025-3-21 19:04:32 | 显示全部楼层 |阅读模式
书目名称R Data Science Quick Reference
副标题A Pocket Guide to AP
编辑Thomas Mailund
视频video
概述The first quick reference of its kind dealing with data science using R.Covers the specific APIs and packages that let you build R-based data science applications.Also covers how to use these packages
图书封面Titlebook: R Data Science Quick Reference; A Pocket Guide to AP Thomas Mailund Book 20191st edition Thomas Mailund 2019 R.data science.tidyr.analytics
描述In this handy, practical book you will cover each concept concisely, with many illustrative examples. You‘ll be introduced to several R data science packages, with examples of how to use each of them. .In this book, you’ll learn about the following APIs and packages that deal specifically with data science applications: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more..After using this handy quick reference guide, you‘ll have the code, APIs, and insights to write data science-based applications in the R programming language.  You‘ll also be able to carry out data analysis.  .What You Will Learn.Import data with readr.Work with categories using forcats, time and dates with lubridate, and strings with stringr.Format data using tidyr and then transform that data using magrittr and dplyr.Write functions with R for data science, data mining, and analytics-based applications.Visualize data with ggplot2 and fit data to models using modelr.Who This Book Is For.Programmers new to R‘s data science, data mining, and analytics packages.  Some prior coding experience with R in general is recommended.  .
出版日期Book 20191st edition
关键词R; data science; tidyr; analytics; purrr; ggplot; modelr; broom; markdown; knitr; shiny; tidyr; stingr; forcats; l
版次1
doihttps://doi.org/10.1007/978-1-4842-4894-2
isbn_ebook978-1-4842-4894-2
copyrightThomas Mailund 2019
The information of publication is updating

书目名称R Data Science Quick Reference影响因子(影响力)




书目名称R Data Science Quick Reference影响因子(影响力)学科排名




书目名称R Data Science Quick Reference网络公开度




书目名称R Data Science Quick Reference网络公开度学科排名




书目名称R Data Science Quick Reference被引频次




书目名称R Data Science Quick Reference被引频次学科排名




书目名称R Data Science Quick Reference年度引用




书目名称R Data Science Quick Reference年度引用学科排名




书目名称R Data Science Quick Reference读者反馈




书目名称R Data Science Quick Reference读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:28:26 | 显示全部楼层
发表于 2025-3-22 04:17:21 | 显示全部楼层
Pipelines: ,l construction. In practical terms, this means that your R code will consist of a series of function calls where the output of one is the input of the next. The pattern is typical, but a straightforward implementation of it has several drawbacks. The Tidyverse provides a “pipe operator” to alleviate this.
发表于 2025-3-22 06:29:07 | 显示全部楼层
发表于 2025-3-22 09:05:15 | 显示全部楼层
Working with Models: , of R packages that support this is well beyond the scope of this book. The main concern when choosing and fitting models is not the syntax, and this book is, after all, a syntax reference. We will look at two packages that aim at making a tidy interface to models.
发表于 2025-3-22 15:02:24 | 显示全部楼层
Introduction,R is a functional programming language with a focus on statistical analysis. It has built-in support for model specifications that can be manipulated as first-class objects, and an extensive collection of functions for dealing with probability distributions and model fitting, both built-in and through extension packages.
发表于 2025-3-22 17:26:47 | 显示全部楼层
发表于 2025-3-22 22:48:52 | 显示全部楼层
Representing Tables: ,The data that the . package returns are represented as . objects. These are tabular data representations similar to the base R data frames but are a more modern version.
发表于 2025-3-23 03:10:57 | 显示全部楼层
发表于 2025-3-23 05:46:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 19:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表