找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quiver Representations; Ralf Schiffler Textbook 2014 Springer International Publishing Switzerland 2014 Associative algebra.Auslander-Reit

[复制链接]
楼主: 去是公开
发表于 2025-3-23 11:14:27 | 显示全部楼层
CMS Books in Mathematicshttp://image.papertrans.cn/q/image/781989.jpg
发表于 2025-3-23 14:07:59 | 显示全部楼层
https://doi.org/10.1007/978-3-319-09204-1Associative algebra; Auslander-Reiten theory; Gabriel‘s theorem; Module; Quiver representation; combinato
发表于 2025-3-23 19:24:27 | 显示全部楼层
发表于 2025-3-24 02:09:12 | 显示全部楼层
Projective and Injective RepresentationsProjective representations and injective representations are key concepts in representation theory. A representation . is called . if the functor Hom(., −) maps surjective morphisms to surjective morphisms. Dually a representation . is called . if the functor Hom(−, .) maps injective morphisms to injective morphisms.
发表于 2025-3-24 02:55:08 | 显示全部楼层
发表于 2025-3-24 09:36:32 | 显示全部楼层
发表于 2025-3-24 12:48:38 | 显示全部楼层
Ralf SchifflerFirst textbook on representation theory which uses the quiver representations approach.Much shorter than other texts on the subject and is meant as a textbook for a one semester course.Explicit constr
发表于 2025-3-24 17:06:25 | 显示全部楼层
发表于 2025-3-24 20:52:31 | 显示全部楼层
Bound Quiver Algebrasalgebras play a central role in representation theory, since, for any finite-dimensional algebra . over an algebraically closed field ., the category mod . is equivalent to the category mod .∕., for some bound quiver algebra .∕..
发表于 2025-3-25 02:31:07 | 显示全部楼层
Quadratic Forms and Gabriel’s Theoremy if . is of Dynkin type . or .. The proof we are presenting uses the classification of positive definite integral quadratic forms associated to graphs and also a little algebraic geometry. For a different proof, using tilting theory, see [8, VII.5].
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 09:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表