找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes; Fabrizio Colombo,Jonathan Gantner Book 2019 Springer

[复制链接]
查看: 8594|回复: 51
发表于 2025-3-21 17:00:04 | 显示全部楼层 |阅读模式
书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes
编辑Fabrizio Colombo,Jonathan Gantner
视频video
概述Contains a new theory for evolution operators.Allows defining new classes of fractional diffusion and evolution problems.Inspires to explore new research directions
丛书名称Operator Theory: Advances and Applications
图书封面Titlebook: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes;  Fabrizio Colombo,Jonathan Gantner Book 2019 Springer
描述.This book presents a new theory for evolution operators and a new method for defining fractional powers of vector operators. This new approach allows to define new classes of fractional diffusion and evolution problems. .These innovative methods and techniques, based on the concept of S-spectrum, can inspire researchers from various areas of operator theory and PDEs to explore new research directions in their fields..This monograph is the natural continuation of the book: Spectral Theory on the S-Spectrum for Quaternionic Operators by Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey  (Operator Theory: Advances and Applications, Vol. 270)..
出版日期Book 2019
关键词S-spectrum; functional calculus; sectorial operators; evolution operators; fractional powers; fractional
版次1
doihttps://doi.org/10.1007/978-3-030-16409-6
isbn_softcover978-3-030-16411-9
isbn_ebook978-3-030-16409-6Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes影响因子(影响力)




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes影响因子(影响力)学科排名




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes网络公开度




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes网络公开度学科排名




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes被引频次




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes被引频次学科排名




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes年度引用




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes年度引用学科排名




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes读者反馈




书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:24:12 | 显示全部楼层
发表于 2025-3-22 01:45:01 | 显示全部楼层
发表于 2025-3-22 06:54:58 | 显示全部楼层
发表于 2025-3-22 12:44:09 | 显示全部楼层
The ,-Functional Calculus,The H.-functional calculus was originally introduced in [170] by Alan McIntosh. His approach was generalized to quaternionic sectorial operators that are injective and have dense range in [30]. Moreover, under the above assumptions, in [30], it is also treated the case of n-tuples of noncommuting operators.
发表于 2025-3-22 13:57:33 | 显示全部楼层
发表于 2025-3-22 19:05:38 | 显示全部楼层
发表于 2025-3-22 22:08:29 | 显示全部楼层
Historical notes and References,Several years ago, motivated by the paper [37] of G. Birkho_ and J. von Neumann and the book [4], one of the authors and I. Sabadini started to look for an appropriate notion of spectrum for quaternionic linear operators.
发表于 2025-3-23 05:24:02 | 显示全部楼层
Appendix: Principles of functional Analysis,The principles of functional analysis do not depend on the quaternionic structure, so with minor changes these can be proved also in quaternionic functional analysis. For the convenience of the reader, we collect such results in this appendix.
发表于 2025-3-23 06:13:28 | 显示全部楼层
Fabrizio Colombo,Jonathan GantnerContains a new theory for evolution operators.Allows defining new classes of fractional diffusion and evolution problems.Inspires to explore new research directions
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 05:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表