找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quaternion and Clifford Fourier Transforms and Wavelets; Eckhard Hitzer,Stephen J. Sangwine Book 2013 Springer Basel 2013 complex numbers.

[复制链接]
楼主: counterfeit
发表于 2025-3-26 22:39:08 | 显示全部楼层
The Balian–Low Theorem for the Windowed Clifford–Fourier Transformurier transform. We proceed with deriving several important properties of such a transform. Finally, we establish the Balian–Low theorem for a Clifford frame under certain natural assumptions on the window function.
发表于 2025-3-27 02:43:38 | 显示全部楼层
Sparse Representation of Signals in Hardy Space reveal the information. Such representations are constructed by decomposing signals into elementary waveforms. A set of all elementary waveforms is called a dictionary. In this chapter, we introduce a new kind of sparse representation of signals in Hardy space.. the compressed sensing (CS) techniqu
发表于 2025-3-27 06:47:25 | 显示全部楼层
发表于 2025-3-27 11:17:33 | 显示全部楼层
Analytic Video (2D + ,) Signals Using Clifford–Fourier Transforms in Multiquaternion Grassmann–Hamil by a scalar, a pseudoscalar and six phases. The phase extraction procedure is fully detailed. Finally, a numerical implementation using discrete fast Fourier transforms of an analytic multiquaternion video signal is provided.
发表于 2025-3-27 14:34:26 | 显示全部楼层
发表于 2025-3-27 19:03:06 | 显示全部楼层
Clifford–Fourier Transform and Spinor Representation of Images. We investigate applications to image processing focusing on segmentation and Clifford–Fourier analysis. All these applications involve sections of the spinor bundle of image graphs, that is spinor fields, satisfying the so-called Dirac equation.
发表于 2025-3-27 22:47:44 | 显示全部楼层
Sparse Representation of Signals in Hardy Spacealled a dictionary. In this chapter, we introduce a new kind of sparse representation of signals in Hardy space.. the compressed sensing (CS) technique with the dictionary. where ⅅ denotes the unit disk. In addition, we give examples exhibiting the algorithm.
发表于 2025-3-28 02:36:40 | 显示全部楼层
发表于 2025-3-28 06:31:58 | 显示全部楼层
发表于 2025-3-28 14:26:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 13:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表