找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quantitative Psychology; The 88th Annual Meet Marie Wiberg,Jee-Seon Kim,Heungsun Hwang,Hao Wu,Tr Conference proceedings 2024 The Editor(s)

[复制链接]
楼主: FROM
发表于 2025-3-25 06:07:17 | 显示全部楼层
Gumbel-Reverse Gumbel (GRG) Model: A New Asymmetric IRT Model for Binary Data, two links are the cumulative distribution functions (CDFs) of the Gumbel-min and Gumbel-max extreme value distributions, respectively. The resulting Gumbel-Reverse Gumbel (GRG) mixture model has one additional parameter. We illustrate using intelligence data taken from the Synthetic Aperture Person
发表于 2025-3-25 11:14:12 | 显示全部楼层
发表于 2025-3-25 15:30:44 | 显示全部楼层
Investigating the Impact of Equating on Measurement Error Using Generalizability Theory, as independent sources of error with potential differential impacts on individual scores and group means. This paper proposes a perspective shift using generalizability theory. It argues that equating, when integrated into the measurement process, should be viewed as one among various sources contr
发表于 2025-3-25 19:53:14 | 显示全部楼层
发表于 2025-3-25 22:35:54 | 显示全部楼层
2194-1009 stics area.Exmaines item response theory, cognitive diagnost.This book includes presentations given at the 88th annual meeting of the Psychometric Society, held in Maryland, USA on July 24–28, 2023...The proceeding covers a diverse set of psychometric topics. The topics include, but are not limited
发表于 2025-3-26 01:34:58 | 显示全部楼层
发表于 2025-3-26 04:18:24 | 显示全部楼层
发表于 2025-3-26 11:31:09 | 显示全部楼层
A Comparison of Full Information Maximum Likelihood and Machine Learning Missing Data Analytical Meachine learning approaches (FIML, RF, and KNN) in growth curve modeling. The effects of sample size, the rate of missingness, and missing data mechanism on model estimation are investigated. Results indicate that FIML is a better choice than the two machine learning imputation methods in terms of model estimation accuracy and efficiency.
发表于 2025-3-26 16:14:19 | 显示全部楼层
发表于 2025-3-26 17:34:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 20:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表