找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quandles and Topological Pairs; Symmetry, Knots, and Takefumi Nosaka Book 2017 The Author(s) 2017 Quandle.Relative objects.Low dimensional

[复制链接]
查看: 24672|回复: 41
发表于 2025-3-21 19:50:04 | 显示全部楼层 |阅读模式
书目名称Quandles and Topological Pairs
副标题Symmetry, Knots, and
编辑Takefumi Nosaka
视频video
概述Shows how the quandle has been evaluated in relation to mathematics or topology while the quandle was often considered to be something combinatorial.Constitutes a guide on quandles at a time when few
丛书名称SpringerBriefs in Mathematics
图书封面Titlebook: Quandles and Topological Pairs; Symmetry, Knots, and Takefumi Nosaka Book 2017 The Author(s) 2017 Quandle.Relative objects.Low dimensional
描述This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles..More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study of low-dimensional topology (e.g., knot theory) and relative objects with symmetry. The direction of research is summarized as “We shall thoroughly (re)interpret the previous studies of relative symmetry in terms of the quandle”. The perspectives contained herein can be summarized by the following topics. The first is on relative objects .G/H., where .G. and .H. are groups, e.g., polyhedrons, reflection, and symmetric spaces. Next, central extensions of groups are discussed, e.g., spin structures, .K.2 groups,and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology..For applications in topology,
出版日期Book 2017
关键词Quandle; Relative objects; Low dimensional topology; Knot; Group cohomology and cup products
版次1
doihttps://doi.org/10.1007/978-981-10-6793-8
isbn_softcover978-981-10-6792-1
isbn_ebook978-981-10-6793-8Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2017
The information of publication is updating

书目名称Quandles and Topological Pairs影响因子(影响力)




书目名称Quandles and Topological Pairs影响因子(影响力)学科排名




书目名称Quandles and Topological Pairs网络公开度




书目名称Quandles and Topological Pairs网络公开度学科排名




书目名称Quandles and Topological Pairs被引频次




书目名称Quandles and Topological Pairs被引频次学科排名




书目名称Quandles and Topological Pairs年度引用




书目名称Quandles and Topological Pairs年度引用学科排名




书目名称Quandles and Topological Pairs读者反馈




书目名称Quandles and Topological Pairs读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:16:53 | 显示全部楼层
Book 2017ions of groups are discussed, e.g., spin structures, .K.2 groups,and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology..For applications in topology,
发表于 2025-3-22 01:15:28 | 显示全部楼层
发表于 2025-3-22 08:11:06 | 显示全部楼层
发表于 2025-3-22 09:04:53 | 显示全部楼层
发表于 2025-3-22 15:58:02 | 显示全部楼层
发表于 2025-3-22 19:12:51 | 显示全部楼层
发表于 2025-3-22 22:28:00 | 显示全部楼层
Takefumi NosakaShows how the quandle has been evaluated in relation to mathematics or topology while the quandle was often considered to be something combinatorial.Constitutes a guide on quandles at a time when few
发表于 2025-3-23 02:49:23 | 显示全部楼层
发表于 2025-3-23 09:04:19 | 显示全部楼层
Relative Group Homology,ersion. After that, we give some examples, where the concept of malnormality is important. Furthermore, in Sect. ., we explicitly give some cocycles of relative group cohomology. Throughout this chapter, we represent a group by . and a right .-module by ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 02:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表