找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Qualitative Properties of Dispersive PDEs; Vladimir Georgiev,Alessandro Michelangeli,Raffaele Conference proceedings 2022 The Editor(s) (i

[复制链接]
楼主: Body-Mass-Index
发表于 2025-3-27 00:27:37 | 显示全部楼层
Quasilinear Wave Equations with Decaying Time-Potentialnvolved. The interaction between linear and nonlinear terms is a crucial point in determination of global evolution dynamics. When the nonlinear term depends on the derivatives of the solution, the situation is even more delicate. Indeed, even in the constant coefficients case, the null conditions s
发表于 2025-3-27 03:04:25 | 显示全部楼层
Hamiltonian Field Theory Close to the Wave Equation: From Fermi-Pasta-Ulam to Water Wavesing to “graded” polynomial perturbations in .., . and their space derivatives of higher order, the local field theory is equivalent, in the sense of the Hamiltonian normal form, to that of the Korteweg-de Vries hierarchy of second order. Within this framework, we explain the connection between the t
发表于 2025-3-27 05:17:10 | 显示全部楼层
发表于 2025-3-27 09:50:01 | 显示全部楼层
发表于 2025-3-27 14:22:34 | 显示全部楼层
Dynamics of Solutions to the Gross–Pitaevskii Equation Describing Dipolar Bose–Einstein Condensatesata below, above, and at the mass–energy threshold. We revisit some properties of powers of the Riesz transforms by means of the decay properties of the integral kernel associated to the parabolic biharmonic equation. These decay properties play a fundamental role in establishing the dynamical features of the solutions to the studied GPE.
发表于 2025-3-27 19:46:16 | 显示全部楼层
发表于 2025-3-28 01:12:31 | 显示全部楼层
Schrödinger Flow’s Dispersive Estimates in a regime of Re-scaled Potentialsxplicit, and the understanding of such a dependence would be crucial in connecting the dispersive behaviour of the short-range Schrödinger operator with the zero-range Hamiltonian. The general set-up of the problem is discussed, together with preliminary answers, open questions, and plausible conjectures, in a ‘propaganda’ spirit for this subject.
发表于 2025-3-28 05:04:24 | 显示全部楼层
发表于 2025-3-28 09:19:26 | 显示全部楼层
发表于 2025-3-28 11:48:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 09:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表