找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quadrature RC−Oscillators; The van der Pol Appr João Carlos Ferreira de Almeida Casaleiro,Luís Aug Book 2019 Springer Nature Switzerland AG

[复制链接]
楼主: Scuttle
发表于 2025-3-26 21:31:41 | 显示全部楼层
发表于 2025-3-27 03:35:17 | 显示全部楼层
João Carlos Ferreira de Almeida Casaleiro,Luís Augusto Bica Gomes Oliveira,Igor M. Filanovskynce Equations. For these, no matrix theory and hardly any calculus are needed. Then, before embarking on linear and nonlinear DS, a review of some Linear Algebra in Chapter 4 provides the bulk of matrix theory required for the study of later Chapters. Systems of Linear Differ­ ential Equations (Ch.
发表于 2025-3-27 06:09:32 | 显示全部楼层
João Carlos Ferreira de Almeida Casaleiro,Luís Augusto Bica Gomes Oliveira,Igor M. Filanovskyiefly introduced in this chapter. A common thread running through these fields is the presence of singularities which causes a failure of the Implicit Function theorem (IFT) and destroys the structural stability of the DS, invalidates forecasts and undermines Comparative Statics analysis. One major
发表于 2025-3-27 11:33:44 | 显示全部楼层
发表于 2025-3-27 15:21:03 | 显示全部楼层
João Carlos Ferreira de Almeida Casaleiro,Luís Augusto Bica Gomes Oliveira,Igor M. Filanovskytion of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.978-3-642-43517-1978-3-642-13722-8
发表于 2025-3-27 18:24:44 | 显示全部楼层
发表于 2025-3-28 01:15:40 | 显示全部楼层
发表于 2025-3-28 02:26:16 | 显示全部楼层
发表于 2025-3-28 08:55:15 | 显示全部楼层
João Carlos Ferreira de Almeida Casaleiro,Luís Augusto Bica Gomes Oliveira,Igor M. Filanovskytion of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.978-3-642-43517-1978-3-642-13722-8
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 03:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表