找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quadratic and Higher Degree Forms; Krishnaswami Alladi,Manjul Bhargava,Pham Huu Tiep Book 2013 Springer Science+Business Media New York 20

[复制链接]
楼主: COAX
发表于 2025-3-23 13:04:43 | 显示全部楼层
Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms,determine if a given algebra of rank 4 over a commutative ring . embeds in the 2 ×2-matrix ring M.(.) and, if so, to compute such an embedding. We discuss many variants of this problem, including algorithmic recognition of quaternion algebras among algebras of rank 4, computation of the Hilbert symbol, and computation of maximal orders.
发表于 2025-3-23 16:17:45 | 显示全部楼层
Integral Positive Ternary Quadratic Forms,We discuss some families of integral positive ternary quadratic forms. Our main example is . where . is positive, squarefree, and . with .
发表于 2025-3-23 21:31:31 | 显示全部楼层
发表于 2025-3-24 00:29:48 | 显示全部楼层
发表于 2025-3-24 05:48:40 | 显示全部楼层
发表于 2025-3-24 07:33:25 | 显示全部楼层
Krishnaswami Alladi,Manjul Bhargava,Pham Huu TiepProvides survey lectures, also accessible to non-experts.Introduction summarizes current research on quadratic and higher degree forms with a presentation of the necessary background material.Contains
发表于 2025-3-24 13:53:30 | 显示全部楼层
发表于 2025-3-24 17:39:49 | 显示全部楼层
John Voightrchführung gültiger Beurteilungen Behandelt grundlegendes.BiThis innovative book provides both the conceptual framework and clinical methods needed to appropriately handle problems that arise in the administration of Miranda warnings and waivers.  Largely overlooked for decades, Miranda rights have
发表于 2025-3-24 21:44:57 | 显示全部楼层
发表于 2025-3-25 02:06:26 | 显示全部楼层
On Representation of an Integer by ,, + ,, + ,, and the Modular Equations of Degree 3 and 5,presentations of . by the ternary quadratic forms .respectively. Finally, I propose a remarkable new identity for .(...)−.(.) with . being an odd prime. This identity makes nontrivial use of the ternary quadratic forms with discriminants .., 16...
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 18:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表