找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quadratic Residues and Non-Residues; Selected Topics Steve Wright Book 2016 Springer International Publishing Switzerland 2016 11-XX; 12D05

[复制链接]
查看: 20524|回复: 47
发表于 2025-3-21 17:41:16 | 显示全部楼层 |阅读模式
书目名称Quadratic Residues and Non-Residues
副标题Selected Topics
编辑Steve Wright
视频video
概述Illustrates how the study of quadratic residues led directly to the development of fundamental methods in elementary, algebraic, and analytic number theory.Presents in detail seven proofs of the Law o
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Quadratic Residues and Non-Residues; Selected Topics Steve Wright Book 2016 Springer International Publishing Switzerland 2016 11-XX; 12D05
描述.This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory..The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory..
出版日期Book 2016
关键词11-XX; 12D05, 13B05, 52C05, 42A16, 42A20; quadratic residues; quadratic non-residues; law of quadratic
版次1
doihttps://doi.org/10.1007/978-3-319-45955-4
isbn_softcover978-3-319-45954-7
isbn_ebook978-3-319-45955-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Quadratic Residues and Non-Residues影响因子(影响力)




书目名称Quadratic Residues and Non-Residues影响因子(影响力)学科排名




书目名称Quadratic Residues and Non-Residues网络公开度




书目名称Quadratic Residues and Non-Residues网络公开度学科排名




书目名称Quadratic Residues and Non-Residues被引频次




书目名称Quadratic Residues and Non-Residues被引频次学科排名




书目名称Quadratic Residues and Non-Residues年度引用




书目名称Quadratic Residues and Non-Residues年度引用学科排名




书目名称Quadratic Residues and Non-Residues读者反馈




书目名称Quadratic Residues and Non-Residues读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:47:48 | 显示全部楼层
发表于 2025-3-22 02:00:02 | 显示全部楼层
发表于 2025-3-22 05:55:36 | 显示全部楼层
Steve Wrights enzyme-linked secondary antibodies specific to the primary antibodies bound to the antigen-coated plates. Competitive ELISA involves a competition between the sample antigen and the plate-coated antigen for the primary antibody, followed by the binding of enzyme-linked secondary antibodies. Sandwi
发表于 2025-3-22 11:36:23 | 显示全部楼层
发表于 2025-3-22 13:27:27 | 显示全部楼层
发表于 2025-3-22 18:08:11 | 显示全部楼层
发表于 2025-3-23 00:51:53 | 显示全部楼层
发表于 2025-3-23 02:37:06 | 显示全部楼层
Book 2016proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory..
发表于 2025-3-23 05:37:28 | 显示全部楼层
,Gauss’ ,: The Law of Quadratic Reciprocity,if .. ≡ 5 mod 103 has any solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law asserts that .. ≡ 5 mod 103 and .. ≡ 103 mod 5 are both solvable or both not. But solution of the latter congruence reduces to .. ≡ 3 mod 5, which clearly has no solutions. Hence neither does .. ≡
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 14:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表