找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quadratic Forms in Infinite Dimensional Vector Spaces; Herbert Gross Book 1979 Springer Science+Business Media New York 1979 algebra.Divis

[复制链接]
楼主: Pierce
发表于 2025-3-25 06:01:38 | 显示全部楼层
发表于 2025-3-25 09:13:41 | 显示全部楼层
Progress in Mathematicshttp://image.papertrans.cn/q/image/780049.jpg
发表于 2025-3-25 14:41:14 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-3542-7algebra; Division; Finite; language; linear algebra; proof; quadratic form; recursion; ring; time; Vector spac
发表于 2025-3-25 16:38:21 | 显示全部楼层
发表于 2025-3-25 23:43:23 | 显示全部楼层
Isomorphisms between Lattices of Linear Subspaces Which are Induced by Isometries,Let E be a vector space over the division ring k and .(E) the lattice of all linear subspaces of E. If Ē is a vector space over the division ring k̄ and τ: .(E) → .(Ē) a lattice isomorphism then by the Fundamental Theorem of Projective Geometry ([1] p. 44) τ is induced by a semilinear map T: E → Ē if we assume that dim E ≥ 3.
发表于 2025-3-26 03:29:42 | 显示全部楼层
Subspaces in Trace-Valued Spaces with Many Isotropic Vectors,The classical Theorem of Witt says that any isometry T.: F → F̄ between . dimensional subspaces F, F̄ of a non degenerate tracevalued space (E, Φ) can be extended to an isometry T: E → E ([4], Satz 4 and Anmerkung p. 31).
发表于 2025-3-26 04:34:55 | 显示全部楼层
发表于 2025-3-26 08:50:05 | 显示全部楼层
Involutions in Hermitean Spaces in Characteristic Two,Fields and forms are as specified under the caption of Chapter VIII. In addition we shall often assume that the field is such that
发表于 2025-3-26 12:53:57 | 显示全部楼层
发表于 2025-3-26 18:13:49 | 显示全部楼层
,Classification of ⊥-Dense Subspaces with Definite Forms,The fields k admitted in this chapter are the same as those of Chapter Twelve but with the additional proviso that k. is archimedean ordered. (E, Φ) will be a non degenerate hermitean space of dimension א. which is weakly universal and has l ∈||Φ||. In contrast to Chapter Twelve the space (E, Φ) is not assumed to be positive definite.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 01:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表