找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quadratic Diophantine Equations; Titu Andreescu,Dorin Andrica Textbook 2015 Springer Science+Business Media New York 2015 Pell‘s equation.

[复制链接]
查看: 36110|回复: 35
发表于 2025-3-21 17:03:53 | 显示全部楼层 |阅读模式
书目名称Quadratic Diophantine Equations
编辑Titu Andreescu,Dorin Andrica
视频video
概述Includes both theoretical and computational examples.Explores new computational techniques for quadratic diophantine equations.Techniques presented will shed light on important open problems.Includes
丛书名称Developments in Mathematics
图书封面Titlebook: Quadratic Diophantine Equations;  Titu Andreescu,Dorin Andrica Textbook 2015 Springer Science+Business Media New York 2015 Pell‘s equation.
描述.This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory..The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis..
出版日期Textbook 2015
关键词Pell‘s equation; algebra; diophantine equations; number theory
版次1
doihttps://doi.org/10.1007/978-0-387-54109-9
isbn_softcover978-1-4939-3880-3
isbn_ebook978-0-387-54109-9Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer Science+Business Media New York 2015
The information of publication is updating

书目名称Quadratic Diophantine Equations影响因子(影响力)




书目名称Quadratic Diophantine Equations影响因子(影响力)学科排名




书目名称Quadratic Diophantine Equations网络公开度




书目名称Quadratic Diophantine Equations网络公开度学科排名




书目名称Quadratic Diophantine Equations被引频次




书目名称Quadratic Diophantine Equations被引频次学科排名




书目名称Quadratic Diophantine Equations年度引用




书目名称Quadratic Diophantine Equations年度引用学科排名




书目名称Quadratic Diophantine Equations读者反馈




书目名称Quadratic Diophantine Equations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:22:07 | 显示全部楼层
发表于 2025-3-22 04:00:32 | 显示全部楼层
1389-2177 esented will shed light on important open problems.Includes .This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases
发表于 2025-3-22 05:36:30 | 显示全部楼层
Textbook 2015hniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems and applications. Moreover, the exposit
发表于 2025-3-22 12:28:34 | 显示全部楼层
Why Quadratic Diophantine Equations?,In order to motivate the study of quadratic type equations, in this chapter we present several problems from various mathematical disciplines leading to such equations. The diversity of the arguments to follow underlines the importance of this subject.
发表于 2025-3-22 15:44:33 | 显示全部楼层
发表于 2025-3-22 19:11:50 | 显示全部楼层
,General Pell’s Equation,This chapter gives the general theory and useful algorithms to find positive integer solutions (., .) to general Pell’s equation (4.1.1), where . is a nonsquare positive integer, and . a nonzero integer.
发表于 2025-3-23 00:29:44 | 显示全部楼层
,Equations Reducible to Pell’s Type Equations,An interesting problem concerning the Pell’s equation . is to study when the second component of a solution (., .) is a perfect square.
发表于 2025-3-23 04:02:21 | 显示全部楼层
Diophantine Representations of Some Sequences,In 1900, David Hilbert asked for an algorithm to decide whether a given Diophantine equation is solvable or not and put this problem tenth in his famous list of 23.
发表于 2025-3-23 05:38:07 | 显示全部楼层
Other Applications,In [122] and [123] it is proven that there are infinitely many positive integers . such that 2. + 1 and 3. + 1 are both perfect squares. The proof relies on the theory of general Pell’s equations.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 21:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表