找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3; Kohei Arai Conference proceedings 2024 The Editor(s) (if applicabl

[复制链接]
楼主: 召集会议
发表于 2025-3-26 22:57:36 | 显示全部楼层
Yuxin Du,Jing Fan,Ari Happonen,Dassan Paulraj,Micheal Tuapend approaches that directly adopt OCR features as the input of an information extraction module, we propose to use contrastive learning to narrow the semantic gap caused by the difference between the tasks of OCR and information extraction. We evaluate the existing end-to-end methods for VIE on the
发表于 2025-3-27 03:18:41 | 显示全部楼层
Tobias Dorrn,Almuth Müllerve experiments show that the proposed method outperforms the existing two-stage cascade models and one-stage end-to-end models with a lighter and faster architecture. Furthermore, the ablation studies verify the generalization of our method, where the proposed modal adapter is effective to bridge va
发表于 2025-3-27 05:40:27 | 显示全部楼层
Wisam Bukaita,Guillermo Garcia de Celis,Manaswi Gurram enhance recognition. Experiments on three datasets prove our method can achieve state-of-the-art recognition performance, and cross-dataset experiments on two datasets verify the generality of our method. Moreover, our method can achieve a breakneck inference speed of 104 FPS with a small backbone
发表于 2025-3-27 11:13:23 | 显示全部楼层
Yeferson Torres Berru,Santiago Jimenez,Lander Chicaiza,Viviana Espinoza Loayzar proposed approach outperforms several existing state-of-the-art approaches, including complex approaches utilizing generative adversarial networks (GANs) and variational auto-encoders (VAEs), on 7 of the datasets, while achieving comparable performance on the remaining 2 datasets. Our findings sug
发表于 2025-3-27 14:10:27 | 显示全部楼层
Xiaoting Huang,Xuelian Xi,Siqi Wang,Zahra Sadeghi,Asif Samir,Stan Matwined on general domain document images, by fine-tuning them on an in-domain annotated subset of EEBO. In experiments, we find that an appropriately trained image-only classifier performs as well or better than text-based poetry classifiers on human transcribed text, and far surpasses the performance o
发表于 2025-3-27 19:37:48 | 显示全部楼层
Dorsa Soleymani,Mahsa Mousavi Diva,Lovelyn Uzoma Ozougwu,Riasat Mahbub,Zahra Sadeghi,Asif Samir,Stan Matwine-of-the-art in both datasets, achieving a word recognition rate of . and a 2.41 DTW on IRONOFF and an expression recognition rate of . and a DTW of 13.93 on CROHME 2019. This work constitutes an important milestone toward full offline document conversion to online.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-6 02:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表