找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Principal Symbol Calculus on Contact Manifolds; Yuri Kordyukov,Fedor Sukochev,Dmitriy Zanin Book 2024 The Editor(s) (if applicable) and Th

[复制链接]
查看: 46288|回复: 35
发表于 2025-3-21 19:48:00 | 显示全部楼层 |阅读模式
书目名称Principal Symbol Calculus on Contact Manifolds
编辑Yuri Kordyukov,Fedor Sukochev,Dmitriy Zanin
视频video
概述the first complete treatment of Connes’ trace theorem on contact manifolds.proves the equivariance of the principal symbol on Heisenberg groups.introduces a natural measure on sub-Riemannian manifolds
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Principal Symbol Calculus on Contact Manifolds;  Yuri Kordyukov,Fedor Sukochev,Dmitriy Zanin Book 2024 The Editor(s) (if applicable) and Th
描述.This book develops a C*-algebraic approach to the notion of principal symbol on Heisenberg groups and, using the fact that contact manifolds are locally modeled by Heisenberg groups, on compact contact manifolds. Applying abstract theorems due to Lord, Sukochev, Zanin and McDonald, a principal symbol on the Heisenberg group is introduced as a homomorphism of C*-algebras. This leads to a version of Connes’ trace theorem for Heisenberg groups, followed by a proof of the equivariant behavior of the principal symbol under Heisenberg diffeomorphisms. Using this equivariance and the authors’ globalization theorem, techniques are developed which enable further extensions to arbitrary stratified Lie groups and, as a consequence, the notion of a principal symbol on compact contact manifolds is described via a patching process. Finally, the Connes trace formula on compact contact sub-Riemannian manifolds is established and a spectrally correct version of the sub-Riemannian volume is defined (different from Popp‘s measure)...The book is aimed at graduate students and researchers working in spectral theory, Heisenberg analysis, operator algebras and noncommutative geometry..
出版日期Book 2024
关键词Principal symbol; Contact manifold; Heisenberg group; Equivariance; Connes Trace Theorem
版次1
doihttps://doi.org/10.1007/978-3-031-69926-9
isbn_softcover978-3-031-69925-2
isbn_ebook978-3-031-69926-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Principal Symbol Calculus on Contact Manifolds影响因子(影响力)




书目名称Principal Symbol Calculus on Contact Manifolds影响因子(影响力)学科排名




书目名称Principal Symbol Calculus on Contact Manifolds网络公开度




书目名称Principal Symbol Calculus on Contact Manifolds网络公开度学科排名




书目名称Principal Symbol Calculus on Contact Manifolds被引频次




书目名称Principal Symbol Calculus on Contact Manifolds被引频次学科排名




书目名称Principal Symbol Calculus on Contact Manifolds年度引用




书目名称Principal Symbol Calculus on Contact Manifolds年度引用学科排名




书目名称Principal Symbol Calculus on Contact Manifolds读者反馈




书目名称Principal Symbol Calculus on Contact Manifolds读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:33:30 | 显示全部楼层
第164492主题贴--第2楼 (沙发)
发表于 2025-3-22 03:15:06 | 显示全部楼层
板凳
发表于 2025-3-22 06:02:30 | 显示全部楼层
第4楼
发表于 2025-3-22 12:09:31 | 显示全部楼层
5楼
发表于 2025-3-22 16:55:24 | 显示全部楼层
6楼
发表于 2025-3-22 17:03:53 | 显示全部楼层
7楼
发表于 2025-3-22 21:45:39 | 显示全部楼层
8楼
发表于 2025-3-23 04:31:33 | 显示全部楼层
9楼
发表于 2025-3-23 05:55:18 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 06:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表