找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Provenance in Data Science; From Data Models to Leslie F. Sikos,Oshani W. Seneviratne,Deborah L. M Book 2021 Springer Nature Switzerland A

[复制链接]
查看: 25745|回复: 35
发表于 2025-3-21 18:42:18 | 显示全部楼层 |阅读模式
书目名称Provenance in Data Science
副标题From Data Models to
编辑Leslie F. Sikos,Oshani W. Seneviratne,Deborah L. M
视频video
概述Presents a collection of provenance techniques and state-of-the-art metadata-enhanced, provenance-aware, knowledge graph-based representations to be used for information processing, management, aggreg
丛书名称Advanced Information and Knowledge Processing
图书封面Titlebook: Provenance in Data Science; From Data Models to  Leslie F. Sikos,Oshani W. Seneviratne,Deborah L. M Book 2021 Springer Nature Switzerland A
描述RDF-based knowledge graphs require additional formalisms to be fully context-aware, which is presented in this book. This book also provides a collection of provenance techniques and state-of-the-art metadata-enhanced, provenance-aware, knowledge graph-based representations across multiple application domains, in order to demonstrate how to combine graph-based data models and provenance representations.  This is important to make statements authoritative, verifiable, and reproducible, such as in biomedical, pharmaceutical, and cybersecurity applications, where the data source and generator can be just as important as the data itself..             .Capturing provenance is critical to ensure sound experimental results and rigorously designed research studies for patient and drug safety, pathology reports, and medical evidence generation. Similarly, provenance is needed for cyberthreat intelligence dashboards and attack mapsthat aggregate and/or fuse heterogeneous data from disparate data sources to differentiate between unimportant online events and dangerous cyberattacks, which is demonstrated in this book. Without provenance, data reliability and trustworthiness might be limited, c
出版日期Book 2021
关键词Knowledge graph; Contextualized Knowledge graph; Data science; Data provenance; Provenance ontology; Scie
版次1
doihttps://doi.org/10.1007/978-3-030-67681-0
isbn_softcover978-3-030-67683-4
isbn_ebook978-3-030-67681-0Series ISSN 1610-3947 Series E-ISSN 2197-8441
issn_series 1610-3947
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Provenance in Data Science影响因子(影响力)




书目名称Provenance in Data Science影响因子(影响力)学科排名




书目名称Provenance in Data Science网络公开度




书目名称Provenance in Data Science网络公开度学科排名




书目名称Provenance in Data Science被引频次




书目名称Provenance in Data Science被引频次学科排名




书目名称Provenance in Data Science年度引用




书目名称Provenance in Data Science年度引用学科排名




书目名称Provenance in Data Science读者反馈




书目名称Provenance in Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:39:57 | 显示全部楼层
第162055主题贴--第2楼 (沙发)
发表于 2025-3-22 00:59:25 | 显示全部楼层
板凳
发表于 2025-3-22 08:35:34 | 显示全部楼层
第4楼
发表于 2025-3-22 11:48:26 | 显示全部楼层
5楼
发表于 2025-3-22 16:21:10 | 显示全部楼层
6楼
发表于 2025-3-22 19:10:56 | 显示全部楼层
7楼
发表于 2025-3-22 22:52:09 | 显示全部楼层
8楼
发表于 2025-3-23 03:02:55 | 显示全部楼层
9楼
发表于 2025-3-23 07:35:07 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-29 06:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表