找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Prominent Feature Extraction for Sentiment Analysis; Basant Agarwal,Namita Mittal Book 2016 The Editor(s) (if applicable) and The Author(s

[复制链接]
查看: 35520|回复: 35
发表于 2025-3-21 18:41:42 | 显示全部楼层 |阅读模式
书目名称Prominent Feature Extraction for Sentiment Analysis
编辑Basant Agarwal,Namita Mittal
视频video
概述Includes a novel semantic parsing scheme which may be applied to many Natural language processing tasks.Provides an efficient machine learning approach for sentiment analysis.Easy to understand and de
丛书名称Socio-Affective Computing
图书封面Titlebook: Prominent Feature Extraction for Sentiment Analysis;  Basant Agarwal,Namita Mittal Book 2016 The Editor(s) (if applicable) and The Author(s
描述.The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model. ..Authors pay attention to the four main findings of the book :. -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features.. - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique per
出版日期Book 2016
关键词Machine Learning; Minimum Redundancy and Maximum Relevance feature selection; Prominent Feature Extrac
版次1
doihttps://doi.org/10.1007/978-3-319-25343-5
isbn_softcover978-3-319-79775-5
isbn_ebook978-3-319-25343-5Series ISSN 2509-5706 Series E-ISSN 2509-5714
issn_series 2509-5706
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Prominent Feature Extraction for Sentiment Analysis影响因子(影响力)




书目名称Prominent Feature Extraction for Sentiment Analysis影响因子(影响力)学科排名




书目名称Prominent Feature Extraction for Sentiment Analysis网络公开度




书目名称Prominent Feature Extraction for Sentiment Analysis网络公开度学科排名




书目名称Prominent Feature Extraction for Sentiment Analysis被引频次




书目名称Prominent Feature Extraction for Sentiment Analysis被引频次学科排名




书目名称Prominent Feature Extraction for Sentiment Analysis年度引用




书目名称Prominent Feature Extraction for Sentiment Analysis年度引用学科排名




书目名称Prominent Feature Extraction for Sentiment Analysis读者反馈




书目名称Prominent Feature Extraction for Sentiment Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:52:14 | 显示全部楼层
第161170主题贴--第2楼 (沙发)
发表于 2025-3-22 01:09:39 | 显示全部楼层
板凳
发表于 2025-3-22 04:35:14 | 显示全部楼层
第4楼
发表于 2025-3-22 09:11:50 | 显示全部楼层
5楼
发表于 2025-3-22 14:08:07 | 显示全部楼层
6楼
发表于 2025-3-22 20:18:12 | 显示全部楼层
7楼
发表于 2025-3-22 22:35:02 | 显示全部楼层
8楼
发表于 2025-3-23 01:56:24 | 显示全部楼层
9楼
发表于 2025-3-23 08:13:59 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 21:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表