找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Principal Component Analysis Networks and Algorithms; Xiangyu Kong,Changhua Hu,Zhansheng Duan Book 2017 Science Press, Beijing and Springe

[复制链接]
查看: 30509|回复: 35
发表于 2025-3-21 18:36:43 | 显示全部楼层 |阅读模式
书目名称Principal Component Analysis Networks and Algorithms
编辑Xiangyu Kong,Changhua Hu,Zhansheng Duan
视频video
概述Systemically summarizes neural based PCA methods with its extensions and generalizations.Presents novel neural based extensions/generalizations of PCA algorithms.Introduces many performance analysis m
图书封面Titlebook: Principal Component Analysis Networks and Algorithms;  Xiangyu Kong,Changhua Hu,Zhansheng Duan Book 2017 Science Press, Beijing and Springe
描述This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no .a priori. knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.
出版日期Book 2017
关键词PCA Algorithms; Principal Component Analysis; Feature Extraction; Generalized Feature Extraction; Neural
版次1
doihttps://doi.org/10.1007/978-981-10-2915-8
isbn_softcover978-981-10-9738-6
isbn_ebook978-981-10-2915-8
copyrightScience Press, Beijing and Springer Nature Singapore Pte Ltd. 2017
The information of publication is updating

书目名称Principal Component Analysis Networks and Algorithms影响因子(影响力)




书目名称Principal Component Analysis Networks and Algorithms影响因子(影响力)学科排名




书目名称Principal Component Analysis Networks and Algorithms网络公开度




书目名称Principal Component Analysis Networks and Algorithms网络公开度学科排名




书目名称Principal Component Analysis Networks and Algorithms被引频次




书目名称Principal Component Analysis Networks and Algorithms被引频次学科排名




书目名称Principal Component Analysis Networks and Algorithms年度引用




书目名称Principal Component Analysis Networks and Algorithms年度引用学科排名




书目名称Principal Component Analysis Networks and Algorithms读者反馈




书目名称Principal Component Analysis Networks and Algorithms读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:55:40 | 显示全部楼层
第155293主题贴--第2楼 (沙发)
发表于 2025-3-22 01:09:07 | 显示全部楼层
板凳
发表于 2025-3-22 07:37:50 | 显示全部楼层
第4楼
发表于 2025-3-22 11:53:50 | 显示全部楼层
5楼
发表于 2025-3-22 16:39:44 | 显示全部楼层
6楼
发表于 2025-3-22 20:19:00 | 显示全部楼层
7楼
发表于 2025-3-23 00:33:16 | 显示全部楼层
8楼
发表于 2025-3-23 04:01:06 | 显示全部楼层
9楼
发表于 2025-3-23 07:09:11 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 05:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表