找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Principal Component Analysis; I. T. Jolliffe Book 19861st edition Springer-Verlag New York 1986 Eigenvalue.Finite.Matrix.Statistica.comput

[复制链接]
查看: 37909|回复: 35
发表于 2025-3-21 18:24:45 | 显示全部楼层 |阅读模式
书目名称Principal Component Analysis
编辑I. T. Jolliffe
视频video
丛书名称Springer Series in Statistics
图书封面Titlebook: Principal Component Analysis;  I. T. Jolliffe Book 19861st edition Springer-Verlag New York 1986 Eigenvalue.Finite.Matrix.Statistica.comput
描述Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen­ sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of
出版日期Book 19861st edition
关键词Eigenvalue; Finite; Matrix; Statistica; computation; computer; eigenvector; factor analysis; form; principal
版次1
doihttps://doi.org/10.1007/978-1-4757-1904-8
isbn_ebook978-1-4757-1904-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer-Verlag New York 1986
The information of publication is updating

书目名称Principal Component Analysis影响因子(影响力)




书目名称Principal Component Analysis影响因子(影响力)学科排名




书目名称Principal Component Analysis网络公开度




书目名称Principal Component Analysis网络公开度学科排名




书目名称Principal Component Analysis被引频次




书目名称Principal Component Analysis被引频次学科排名




书目名称Principal Component Analysis年度引用




书目名称Principal Component Analysis年度引用学科排名




书目名称Principal Component Analysis读者反馈




书目名称Principal Component Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:55:21 | 显示全部楼层
第155291主题贴--第2楼 (沙发)
发表于 2025-3-22 02:56:24 | 显示全部楼层
板凳
发表于 2025-3-22 07:11:38 | 显示全部楼层
第4楼
发表于 2025-3-22 12:30:22 | 显示全部楼层
5楼
发表于 2025-3-22 14:24:55 | 显示全部楼层
6楼
发表于 2025-3-22 17:17:58 | 显示全部楼层
7楼
发表于 2025-3-22 23:53:54 | 显示全部楼层
8楼
发表于 2025-3-23 04:10:45 | 显示全部楼层
9楼
发表于 2025-3-23 09:26:14 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 09:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表