找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Potential Functions of Random Walks in ℤ with Infinite Variance; Estimates and Applic Kôhei Uchiyama Book 2023 The Editor(s) (if applicable

[复制链接]
查看: 13537|回复: 35
发表于 2025-3-21 19:26:34 | 显示全部楼层 |阅读模式
书目名称Potential Functions of Random Walks in ℤ with Infinite Variance
副标题Estimates and Applic
编辑Kôhei Uchiyama
视频video
概述Emphasises the significance of the potential function.Gives classical proofs of new and established results.Generalises old results to new settings
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Potential Functions of Random Walks in ℤ with Infinite Variance; Estimates and Applic Kôhei Uchiyama Book 2023 The Editor(s) (if applicable
描述.This book studies the potential functions of one-dimensional recurrent random walks on the lattice of integers with step distribution of infinite variance. The central focus is on obtaining reasonably nice estimates of the potential function. These estimates are then applied to various situations, yielding precise asymptotic results on, among other things, hitting probabilities of finite sets, overshoot distributions, Green functions on long finite intervals and the half-line, and absorption probabilities of two-sided exit problems..The potential function of a random walk is a central object in fluctuation theory.  If the variance of the step distribution is finite, the potential function has a simple asymptotic form, which enables the theory of recurrent random walks to be described in a unified way with rather explicit formulae. On the other hand, if the variance is infinite, the potential function behaves in a wide range of ways depending on the step distribution, which the asymptotic behaviour of many functionals of the random walk closely reflects..In the case when the step distribution is attracted to a strictly stable law, aspects of the random walk have been intensively st
出版日期Book 2023
关键词Sums of independent & identically distributed random variables; Potential theory of random walk; Rando
版次1
doihttps://doi.org/10.1007/978-3-031-41020-8
isbn_softcover978-3-031-41019-2
isbn_ebook978-3-031-41020-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Potential Functions of Random Walks in ℤ with Infinite Variance影响因子(影响力)




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance影响因子(影响力)学科排名




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance网络公开度




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance网络公开度学科排名




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance被引频次




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance被引频次学科排名




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance年度引用




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance年度引用学科排名




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance读者反馈




书目名称Potential Functions of Random Walks in ℤ with Infinite Variance读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:16:50 | 显示全部楼层
第152378主题贴--第2楼 (沙发)
发表于 2025-3-22 04:25:31 | 显示全部楼层
板凳
发表于 2025-3-22 07:32:39 | 显示全部楼层
第4楼
发表于 2025-3-22 11:55:09 | 显示全部楼层
5楼
发表于 2025-3-22 15:43:08 | 显示全部楼层
6楼
发表于 2025-3-22 20:30:54 | 显示全部楼层
7楼
发表于 2025-3-23 00:54:09 | 显示全部楼层
8楼
发表于 2025-3-23 04:49:05 | 显示全部楼层
9楼
发表于 2025-3-23 06:10:03 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 20:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表