找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Positive Operator Semigroups; From Finite to Infin András Bátkai,Marjeta Kramar Fijavž,Abdelaziz Rhan Textbook 2017 Springer International

[复制链接]
查看: 13259|回复: 35
发表于 2025-3-21 19:37:08 | 显示全部楼层 |阅读模式
书目名称Positive Operator Semigroups
副标题From Finite to Infin
编辑András Bátkai,Marjeta Kramar Fijavž,Abdelaziz Rhan
视频video
概述Demonstrates what positivity can do for an operator semigroup and how it affects the solution of an evolution equation.Develops finite dimensional theory in a coordinate-free way.Illustrates a rich se
丛书名称Operator Theory: Advances and Applications
图书封面Titlebook: Positive Operator Semigroups; From Finite to Infin András Bátkai,Marjeta Kramar Fijavž,Abdelaziz Rhan Textbook 2017 Springer International
描述This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. .In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. .The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date b
出版日期Textbook 2017
关键词Perron-Frobenius theory; asymptotic behaviour; evolution equations; operator semigroups; positivity; matr
版次1
doihttps://doi.org/10.1007/978-3-319-42813-0
isbn_softcover978-3-319-82670-7
isbn_ebook978-3-319-42813-0Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Positive Operator Semigroups影响因子(影响力)




书目名称Positive Operator Semigroups影响因子(影响力)学科排名




书目名称Positive Operator Semigroups网络公开度




书目名称Positive Operator Semigroups网络公开度学科排名




书目名称Positive Operator Semigroups被引频次




书目名称Positive Operator Semigroups被引频次学科排名




书目名称Positive Operator Semigroups年度引用




书目名称Positive Operator Semigroups年度引用学科排名




书目名称Positive Operator Semigroups读者反馈




书目名称Positive Operator Semigroups读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:08:01 | 显示全部楼层
第151846主题贴--第2楼 (沙发)
发表于 2025-3-22 02:21:00 | 显示全部楼层
板凳
发表于 2025-3-22 05:22:46 | 显示全部楼层
第4楼
发表于 2025-3-22 11:22:39 | 显示全部楼层
5楼
发表于 2025-3-22 16:26:10 | 显示全部楼层
6楼
发表于 2025-3-22 20:57:03 | 显示全部楼层
7楼
发表于 2025-3-23 01:07:56 | 显示全部楼层
8楼
发表于 2025-3-23 04:44:45 | 显示全部楼层
9楼
发表于 2025-3-23 07:03:21 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 12:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表