找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Population-Based Optimization on Riemannian Manifolds; Robert Simon Fong,Peter Tino Book 2022 The Editor(s) (if applicable) and The Author

[复制链接]
查看: 33674|回复: 35
发表于 2025-3-21 17:26:02 | 显示全部楼层 |阅读模式
书目名称Population-Based Optimization on Riemannian Manifolds
编辑Robert Simon Fong,Peter Tino
视频video
概述Presents recent research on Population-based Optimization on Riemannian manifolds.Addresses the locality and implicit assumptions of manifold optimization.Presents a novel population-based optimizatio
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Population-Based Optimization on Riemannian Manifolds;  Robert Simon Fong,Peter Tino Book 2022 The Editor(s) (if applicable) and The Author
描述.Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. .Manifold optimization methods mainly focus on adapting existing optimization methods from the usual “easy-to-deal-with” Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry..This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space..This monograph pr
出版日期Book 2022
关键词Computational Intelligence; Population-based Optimization Algorithm; Riemannian Manifolds; Manifold Opt
版次1
doihttps://doi.org/10.1007/978-3-031-04293-5
isbn_softcover978-3-031-04295-9
isbn_ebook978-3-031-04293-5Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Population-Based Optimization on Riemannian Manifolds影响因子(影响力)




书目名称Population-Based Optimization on Riemannian Manifolds影响因子(影响力)学科排名




书目名称Population-Based Optimization on Riemannian Manifolds网络公开度




书目名称Population-Based Optimization on Riemannian Manifolds网络公开度学科排名




书目名称Population-Based Optimization on Riemannian Manifolds被引频次




书目名称Population-Based Optimization on Riemannian Manifolds被引频次学科排名




书目名称Population-Based Optimization on Riemannian Manifolds年度引用




书目名称Population-Based Optimization on Riemannian Manifolds年度引用学科排名




书目名称Population-Based Optimization on Riemannian Manifolds读者反馈




书目名称Population-Based Optimization on Riemannian Manifolds读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:13:31 | 显示全部楼层
第151606主题贴--第2楼 (沙发)
发表于 2025-3-22 04:00:12 | 显示全部楼层
板凳
发表于 2025-3-22 07:42:26 | 显示全部楼层
第4楼
发表于 2025-3-22 12:42:48 | 显示全部楼层
5楼
发表于 2025-3-22 16:15:24 | 显示全部楼层
6楼
发表于 2025-3-22 19:39:35 | 显示全部楼层
7楼
发表于 2025-3-23 00:57:21 | 显示全部楼层
8楼
发表于 2025-3-23 01:28:12 | 显示全部楼层
9楼
发表于 2025-3-23 08:31:44 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表