找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Periodic Solutions of the N-Body Problem; Kenneth R. Meyer Book 1999 Springer-Verlag Berlin Heidelberg 1999 Celestial Mechanics.Hamiltonia

[复制链接]
查看: 27241|回复: 35
发表于 2025-3-21 16:03:41 | 显示全部楼层 |阅读模式
书目名称Periodic Solutions of the N-Body Problem
编辑Kenneth R. Meyer
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Periodic Solutions of the N-Body Problem;  Kenneth R. Meyer Book 1999 Springer-Verlag Berlin Heidelberg 1999 Celestial Mechanics.Hamiltonia
描述The N-body problem is the classical prototype of a Hamiltonian system with a large symmetry group and many first integrals. These lecture notes are an introduction to the theory of periodic solutions of such Hamiltonian systems. From a generic point of view the N-body problem is highly degenerate. It is invariant under the symmetry group of Euclidean motions and admits linear momentum, angular momentum and energy as integrals. Therefore, the integrals and symmetries must be confronted head on, which leads to the definition of the reduced space where all the known integrals and symmetries have been eliminated. It is on the reduced space that one can hope for a nonsingular Jacobian without imposing extra symmetries. These lecture notes are intended for graduate students and researchers in mathematics or celestial mechanics with some knowledge of the theory of ODE or dynamical system theory. The first six chapters develops the theory of Hamiltonian systems, symplectic transformations and coordinates, periodic solutions and their multipliers, symplectic scaling, the reduced space etc. The remaining six chapters contain theorems which establish the existence of periodic solutions of the
出版日期Book 1999
关键词Celestial Mechanics; Hamiltonian Systems; N-Body Problem; Symmetries; mechanics
版次1
doihttps://doi.org/10.1007/BFb0094677
isbn_softcover978-3-540-66630-1
isbn_ebook978-3-540-48073-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

书目名称Periodic Solutions of the N-Body Problem影响因子(影响力)




书目名称Periodic Solutions of the N-Body Problem影响因子(影响力)学科排名




书目名称Periodic Solutions of the N-Body Problem网络公开度




书目名称Periodic Solutions of the N-Body Problem网络公开度学科排名




书目名称Periodic Solutions of the N-Body Problem被引频次




书目名称Periodic Solutions of the N-Body Problem被引频次学科排名




书目名称Periodic Solutions of the N-Body Problem年度引用




书目名称Periodic Solutions of the N-Body Problem年度引用学科排名




书目名称Periodic Solutions of the N-Body Problem读者反馈




书目名称Periodic Solutions of the N-Body Problem读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:32:26 | 显示全部楼层
第144072主题贴--第2楼 (沙发)
发表于 2025-3-22 03:16:34 | 显示全部楼层
板凳
发表于 2025-3-22 04:38:50 | 显示全部楼层
第4楼
发表于 2025-3-22 10:12:56 | 显示全部楼层
5楼
发表于 2025-3-22 16:51:13 | 显示全部楼层
6楼
发表于 2025-3-22 20:00:55 | 显示全部楼层
7楼
发表于 2025-3-22 22:25:16 | 显示全部楼层
8楼
发表于 2025-3-23 01:33:33 | 显示全部楼层
9楼
发表于 2025-3-23 07:56:39 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 23:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表