找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Parameterized and Exact Computation; 8th International Sy Gregory Gutin,Stefan Szeider Conference proceedings 2013 Springer International P

[复制链接]
楼主: 联系
发表于 2025-3-23 09:47:46 | 显示全部楼层
发表于 2025-3-23 15:42:02 | 显示全部楼层
发表于 2025-3-23 21:46:13 | 显示全部楼层
发表于 2025-3-24 01:48:46 | 显示全部楼层
On Subexponential and FPT-Time Inapproximability, of them being very active in its own, there is an increasing attention to the connection between these different frameworks. In particular, whether . would be better approximable once endowed with subexponential-time or FPT-time is a central question. In this article, we provide new insights to thi
发表于 2025-3-24 04:20:57 | 显示全部楼层
Multi-parameter Complexity Analysis for Constrained Size Graph Problems: Using Greediness for Parameterization,ality problems as . . ., . ., etc. By developing a technique that we call “greediness-for-parameterization”, we obtain fixed parameter algorithms with respect to a pair of parameters ., the size of the solution (but . its value) and ., the maximum degree of the input graph. In particular, greediness
发表于 2025-3-24 06:50:08 | 显示全部楼层
发表于 2025-3-24 14:44:15 | 显示全部楼层
Incompressibility of ,-Free Edge Modification, most . edges so that the resulting graph is .-free, i.e., contains no induced subgraph isomorphic to .. These .-free edge modification problems are well known to be FPT for every fixed .. In this paper, we study the nonexistence of polynomial kernels for them in terms of the structure of ., and com
发表于 2025-3-24 17:47:14 | 显示全部楼层
发表于 2025-3-24 20:01:53 | 显示全部楼层
发表于 2025-3-24 23:18:34 | 显示全部楼层
Subgraphs Satisfying MSO Properties on ,-Topologically Orderable Digraphs,ether with such an ordering, one may count the number of subgraphs of . that at the same time satisfy a monadic second order formula . and are the union of . . paths, in time .(.,.,.)·. .. Our result implies the polynomial time solvability of many natural counting problems on digraphs admitting .-to
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 07:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表