找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Parallel Problem Solving from Nature – PPSN XVII; 17th International C Günter Rudolph,Anna V. Kononova,Tea Tušar Conference proceedings 202

[复制链接]
楼主: 监督
发表于 2025-3-23 09:49:24 | 显示全部楼层
发表于 2025-3-23 14:33:19 | 显示全部楼层
发表于 2025-3-23 20:35:38 | 显示全部楼层
Improving Nevergrad’s Algorithm Selection Wizard NGOpt Through Automated Algorithm Configurationhe problem and available computational resources, such as number and type of decision variables, maximal number of evaluations, possibility to parallelize evaluations, etc. State-of-the-art algorithm selection wizards are complex and difficult to improve. We propose in this work the use of automated
发表于 2025-3-24 00:35:21 | 显示全部楼层
发表于 2025-3-24 03:14:26 | 显示全部楼层
Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based Featuress that are expected to perform well for the particular setting. The selection is classically done offline, using openly available information about the problem instance or features that are extracted from the instance during a dedicated feature extraction step. This ignores valuable information that
发表于 2025-3-24 06:50:29 | 显示全部楼层
A Systematic Approach to Analyze the Computational Cost of Robustness in Model-Assisted Robust Optimizationnal optimization problem into a robust counterpart, e.g., by taking an average of the function values over different perturbations to a specific input. Solving the robust counterpart instead of the original problem can significantly increase the associated computational cost, which is often overlook
发表于 2025-3-24 14:08:26 | 显示全部楼层
Adaptive Function Value Warping for Surrogate Model Assisted Evolutionary Optimizationms. Most surrogate modelling techniques in use with evolutionary algorithms today do not preserve the desirable invariance to order-preserving transformations of objective function values of the underlying algorithms. We propose adaptive function value warping as a tool aiming to reduce the sensitiv
发表于 2025-3-24 16:18:08 | 显示全部楼层
发表于 2025-3-24 20:40:41 | 显示全部楼层
Finding Knees in Bayesian Multi-objective Optimizationber of objectives, extracting the Pareto front might not be easy nor cheap. On the other hand, the . is not always interested in the entire Pareto front, and might prefer a solution where there is a desirable trade-off between different objectives. An example of an attractive solution is the knee po
发表于 2025-3-25 02:36:36 | 显示全部楼层
Risto Trajanov,Ana Nikolikj,Gjorgjina Cenikj,Fabien Teytaud,Mathurin Videau,Olivier Teytaud,Tome Eftimov,Manuel López-Ibáñez,Carola Doerreränderte Kundenwünsche einstellen. Letztere wiederum sind einerseits von diesen Prozessen durch Ausdünnung der kostenträchtigen Filialnetze betroffen, müssen ihr Geld per Online-Banking selbst verwalten und ein ganz neues Vertrauensverhältnis zu ihrem Finanzdienstleister aufbauen, der nun neben ihr
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 10:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表