找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Orthogonal Polynomials; 2nd AIMS-Volkswagen Mama Foupouagnigni,Wolfram Koepf Conference proceedings 2020 Springer Nature Switzerland AG 20

[复制链接]
查看: 30823|回复: 59
发表于 2025-3-21 18:14:36 | 显示全部楼层 |阅读模式
书目名称Orthogonal Polynomials
副标题2nd AIMS-Volkswagen
编辑Mama Foupouagnigni,Wolfram Koepf
视频video
概述Develops and discusses new ideas in orthogonal polynomials and applications.Gives young researchers a good mastering of the basics of orthogonal polynomials.Fosters a proper understanding of orthogona
丛书名称Tutorials, Schools, and Workshops in the Mathematical Sciences
图书封面Titlebook: Orthogonal Polynomials; 2nd AIMS-Volkswagen  Mama Foupouagnigni,Wolfram Koepf Conference proceedings 2020 Springer Nature Switzerland AG 20
描述.This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations..The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation..
出版日期Conference proceedings 2020
关键词univariate orthogonal polynomial; multivariate orthogonal polynomial; multiple orthogonal polynomial; r
版次1
doihttps://doi.org/10.1007/978-3-030-36744-2
isbn_softcover978-3-030-36746-6
isbn_ebook978-3-030-36744-2Series ISSN 2522-0969 Series E-ISSN 2522-0977
issn_series 2522-0969
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Orthogonal Polynomials影响因子(影响力)




书目名称Orthogonal Polynomials影响因子(影响力)学科排名




书目名称Orthogonal Polynomials网络公开度




书目名称Orthogonal Polynomials网络公开度学科排名




书目名称Orthogonal Polynomials被引频次




书目名称Orthogonal Polynomials被引频次学科排名




书目名称Orthogonal Polynomials年度引用




书目名称Orthogonal Polynomials年度引用学科排名




书目名称Orthogonal Polynomials读者反馈




书目名称Orthogonal Polynomials读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:53:02 | 显示全部楼层
Orthogonal Polynomials978-3-030-36744-2Series ISSN 2522-0969 Series E-ISSN 2522-0977
发表于 2025-3-22 02:29:09 | 显示全部楼层
Classical Continuous Orthogonal PolynomialsClassical orthogonal polynomials (Hermite, Laguerre, Jacobi and Bessel) constitute the most important families of orthogonal polynomials. They appear in mathematical physics when Sturn-Liouville problems for hypergeometric differential equation are studied. These families of orthogonal polynomials have specific properties. Our main aim is to:
发表于 2025-3-22 08:06:30 | 显示全部楼层
Generating Functions and Hypergeometric Representations of Classical Continuous Orthogonal PolynomiaThe aim of this work is to show how to obtain generating functions for classical orthogonal polynomials and derive their hypergeometric representations.
发表于 2025-3-22 11:19:17 | 显示全部楼层
Classical Orthogonal Polynomials of a Discrete and a ,-Discrete VariableThe classical orthogonal polynomials of discrete and .-discrete orthogonal polynomials are introduced from their difference and .-difference equations. Some structure formulas are proved for the Charlier and the Al-Salam Carlitz polynomials from their generating functions.
发表于 2025-3-22 15:55:31 | 显示全部楼层
发表于 2025-3-22 18:08:06 | 显示全部楼层
Signal Processing, Orthogonal Polynomials, and Heun EquationsA survey of recents advances in the theory of Heun operators is offered. Some of the topics covered include: quadratic algebras and orthogonal polynomials, differential and difference Heun operators associated to Jacobi and Hahn polynomials, connections with time and band limiting problems in signal processing.
发表于 2025-3-22 23:59:36 | 显示全部楼层
Mama Foupouagnigni,Wolfram KoepfDevelops and discusses new ideas in orthogonal polynomials and applications.Gives young researchers a good mastering of the basics of orthogonal polynomials.Fosters a proper understanding of orthogona
发表于 2025-3-23 02:28:04 | 显示全部楼层
Tutorials, Schools, and Workshops in the Mathematical Scienceshttp://image.papertrans.cn/o/image/704706.jpg
发表于 2025-3-23 06:43:19 | 显示全部楼层
https://doi.org/10.1007/978-3-030-36744-2univariate orthogonal polynomial; multivariate orthogonal polynomial; multiple orthogonal polynomial; r
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 18:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表