找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Orthogonal Latin Squares Based on Groups; Anthony B. Evans Book 2018 Springer International Publishing AG, part of Springer Nature 2018 Or

[复制链接]
楼主: McKinley
发表于 2025-3-25 06:48:52 | 显示全部楼层
Orthogonal Latin Squares Based on Groups978-3-319-94430-2Series ISSN 1389-2177 Series E-ISSN 2197-795X
发表于 2025-3-25 09:48:25 | 显示全部楼层
发表于 2025-3-25 14:52:10 | 显示全部楼层
Latin Squares Based on Groupsality from a purely algebraic point of view, using difference matrices, complete mappings, and orthomorphisms. The nets, affine planes, projective planes, and transversal designs constructed in this way are characterized by the action of the group on these designs. We introduce these concepts in this chapter.
发表于 2025-3-25 17:59:42 | 显示全部楼层
发表于 2025-3-25 20:13:49 | 显示全部楼层
发表于 2025-3-26 02:07:20 | 显示全部楼层
The Groups ,(,, ,), ,(,, ,), ,(,, ,), and ,(,, ,)onal case, each of these groups is isomorphic to the nonabelian group of order 6, a group with a nontrivial, cyclic Sylow 2-subgroup, which therefore is not admissible by a result of Hall and Paige. In this chapter we will also prove the admissibility of GL(., .), SL(2, .), PSL(2, .), and PGL(., .) when . is odd.
发表于 2025-3-26 05:39:49 | 显示全部楼层
发表于 2025-3-26 10:34:17 | 显示全部楼层
发表于 2025-3-26 13:40:43 | 显示全部楼层
发表于 2025-3-26 19:25:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 13:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表