找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ordered Algebraic Structures; Proceedings of the C Jorge Martinez Conference proceedings 1989 Kluwer Academic Publishers 1989 Abelian group

[复制链接]
楼主: 适婚女孩
发表于 2025-3-25 06:51:57 | 显示全部楼层
发表于 2025-3-25 08:52:43 | 显示全部楼层
发表于 2025-3-25 14:05:51 | 显示全部楼层
发表于 2025-3-25 19:46:11 | 显示全部楼层
Lattice-Ordered Groups of Divisibility: An Expository IntroductionThis paper discusses the interplay between the theories of abelian ℓ-groups and Bezout domains via the group of divisibility This interplay depends on a one-to-one correspondence between onto ℓ-homomorphisms and overrings. A method for interpreting ℓ-embeddings in the context of Bezout domains is conjectured.
发表于 2025-3-25 23:30:41 | 显示全部楼层
Recent Results on the Free Lattice-Ordered Group over a Right-Orderable GroupIn the following, we give a survey of recent results concerning when the free lattice-ordered group over a group retains some properties, such as nilpotency or solvability, of the original group.
发表于 2025-3-26 00:38:33 | 显示全部楼层
Periodic Extensions of Ordered GroupsA PARTIAL ORDER . on a group . is a subset . of . satisfying the following conditions:
发表于 2025-3-26 05:38:47 | 显示全部楼层
发表于 2025-3-26 11:23:39 | 显示全部楼层
Some Applications of Definable Spine Analysis in Ordered Abelian GroupsThe quantifier elimination theorem for ordered abelian groups (o.a.g.) proved by Peter Schmitt [S], reduces the test for elementary equivalence of two ordered abelian groups G and H to countably many tests for elementary equivalence of Sp.(G) and Sp.(H) (definable spine) of convex subgroups of G and H.
发表于 2025-3-26 15:46:26 | 显示全部楼层
Representation of a real polynomial f(X) as a sum of 2m-th powers of rational functionsFrom Becker’s Satz 2.14 in [B.] it follows that a polynomial f ∈ ℝ[X] admits a representation .with g., h∈ ℝ[X] if and only if f satisfies the following three conditions:.Once f satisfies these conditions, the problem arises how to obtain a representation (1) for f. This paper is concerned with that problem.
发表于 2025-3-26 20:17:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-3 21:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表