找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Orbital Relative Motion and Terminal Rendezvous; Analytic and Numeric Jean Albert Kéchichian Book 2021 The Editor(s) (if applicable) and Th

[复制链接]
楼主: 突然
发表于 2025-3-23 12:24:03 | 显示全部楼层
发表于 2025-3-23 14:02:11 | 显示全部楼层
Orbital Relative Motion and Terminal Rendezvous978-3-030-64657-8Series ISSN 0924-4263 Series E-ISSN 2542-8896
发表于 2025-3-23 18:21:19 | 显示全部楼层
Book 2021ives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes
发表于 2025-3-23 22:18:29 | 显示全部楼层
发表于 2025-3-24 02:21:57 | 显示全部楼层
发表于 2025-3-24 08:57:24 | 显示全部楼层
Analytic Solutions for the Perturbed Motion of a Spacecraft in Near-Circular Orbit, Under the Influthe . harmonic, a position error of 200 m per revolution is sustained when the initial orbit is circular. The equations developed in this chapter can be used to carry out terminal rendezvous in near-circular obit around the oblate Earth.
发表于 2025-3-24 14:12:37 | 显示全部楼层
The Analysis of the Relative Motion in General Elliptic Orbit with Respect to a Dragging and Precese equations can be effectively put to use in calculating by an iterative scheme, the impulsive rendezvous maneuvers in elliptic orbit around the Earth or those planets that are either atmosphere bearing or have a dominant second zonal harmonic, or both.
发表于 2025-3-24 16:39:59 | 显示全部楼层
发表于 2025-3-24 21:48:17 | 显示全部楼层
Effect of Luni-Solar Gravity Perturbations on a Near-Circular Orbit: Third-Body Orbit Eccentricity ied out, all the orbital elements can be readily obtained and used for example in the maneuver planning function. This theory can be useful for the autonomous navigation of geostationary spacecraft as well as other high near-circular orbit applications such as the GPS spacecraft.
发表于 2025-3-25 03:03:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 03:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表