找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Option Prices as Probabilities; A New Look at Genera Cristophe Profeta,Bernard Roynette,Marc Yor Book 2010 Springer-Verlag Berlin Heidelber

[复制链接]
查看: 54563|回复: 42
发表于 2025-3-21 17:22:13 | 显示全部楼层 |阅读模式
书目名称Option Prices as Probabilities
副标题A New Look at Genera
编辑Cristophe Profeta,Bernard Roynette,Marc Yor
视频video
概述To the best of our knowledge this book discusses in a unique way last passage times.Includes supplementary material:
丛书名称Springer Finance
图书封面Titlebook: Option Prices as Probabilities; A New Look at Genera Cristophe Profeta,Bernard Roynette,Marc Yor Book 2010 Springer-Verlag Berlin Heidelber
描述Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?
出版日期Book 2010
关键词Azéma supermartingale; Black-Scholes; Black-Scholes Formulae; Finite Horizon; Last passages times; Martin
版次1
doihttps://doi.org/10.1007/978-3-642-10395-7
isbn_softcover978-3-642-10394-0
isbn_ebook978-3-642-10395-7Series ISSN 1616-0533 Series E-ISSN 2195-0687
issn_series 1616-0533
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Option Prices as Probabilities影响因子(影响力)




书目名称Option Prices as Probabilities影响因子(影响力)学科排名




书目名称Option Prices as Probabilities网络公开度




书目名称Option Prices as Probabilities网络公开度学科排名




书目名称Option Prices as Probabilities被引频次




书目名称Option Prices as Probabilities被引频次学科排名




书目名称Option Prices as Probabilities年度引用




书目名称Option Prices as Probabilities年度引用学科排名




书目名称Option Prices as Probabilities读者反馈




书目名称Option Prices as Probabilities读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:07:41 | 显示全部楼层
发表于 2025-3-22 04:16:32 | 显示全部楼层
发表于 2025-3-22 06:39:58 | 显示全部楼层
发表于 2025-3-22 09:19:33 | 显示全部楼层
Existence and Properties of Pseudo-Inverses for Bessel and Related Processes,ework, starting with the case of Bessel (and some related) processes. We show in particular that the tail probabilities of a Bessel process of index .≥1/2 increase with respect to time; in fact it is the distribution function of a random time which is related to first and last passage times of Besse
发表于 2025-3-22 13:43:59 | 显示全部楼层
Existence of Pseudo-Inverses for Diffusions,We shall focus here on increasing pseudo-inverses, and we shall deal with two cases: . More precisely, we shall prove that, to a positive diffusion . starting from 0, we can associate another diffusion . such that the tail probabilities of . are the distribution functions of the last passage times o
发表于 2025-3-22 19:09:33 | 显示全部楼层
Book 2010t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of
发表于 2025-3-22 23:15:09 | 显示全部楼层
Book 2010p. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?
发表于 2025-3-23 03:06:44 | 显示全部楼层
发表于 2025-3-23 06:39:11 | 显示全部楼层
Study of Last Passage Times up to a Finite Horizon,the ℱ.-measurable random time: . and write the analogues of formulae (1.20) and (1.21) for these times .. This will lead us to the interesting notion of past-future martingales, which we shall study in details in Section 5.2.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 12:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表