找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Optimal Transportation Networks; Models and Theory Marc Bernot,Vicent Caselles,Jean-Michel Morel Book 2009 Springer-Verlag Berlin Heidelber

[复制链接]
楼主: JADE
发表于 2025-3-23 11:02:22 | 显示全部楼层
发表于 2025-3-23 14:40:39 | 显示全部楼层
发表于 2025-3-23 20:40:51 | 显示全部楼层
发表于 2025-3-24 01:28:11 | 显示全部楼层
发表于 2025-3-24 05:35:58 | 显示全部楼层
Open Problems,Problem 15.1. Let . be a sequence of optimal traffic plans such that . is uniformly bounded and . converges to χ. Is χ optimal?
发表于 2025-3-24 08:03:02 | 显示全部楼层
发表于 2025-3-24 11:03:41 | 显示全部楼层
The Tree Structure of Optimal Traffic Plans and their Approximation, point. The presentation here is inspired from [13]. Several techniques come from papers by Xia [94] and Maddalena-Solimini [58]. The proof of the bi-Lipschitz regularity of fibers with positive flow follows [95] and the pruning and theorem is borrowed from Devillanova and Solimini [79]. The monoton
发表于 2025-3-24 17:42:35 | 显示全部楼层
Irrigability and Dimension, happens if α is critical? Corollary 10.16 gives the answer: if any probability measure μ with a bounded supports is α-irrigable, then α>1/.. Thus the .-dimensional Lebesgue measure is not 1−1/. irrigable. Here the presentation and results follow closely Devillanova’s PhD [28] and Devillanova-Solimi
发表于 2025-3-24 22:24:40 | 显示全部楼层
The Landscape of an Optimal Pattern, be defined as a path integral along the network from the source to .. does not depend on the path but only on .. Section 11.4 is devoted to a general semicontinuity property of . and Section 11.5 to its Hölder continuity when the irrigated measure dominates Lebesgue on .. The whole chapter follows
发表于 2025-3-25 01:54:10 | 显示全部楼层
The Gilbert-Steiner Problem,n Gilbert’s article, yet without proof. In the second section, we generalize the construction already made for two masses to any number of masses. More precisely, if we prescribe a particular topology of a tree irrigating . masses from a Dirac mass, we describe a recursive procedure that permits to
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-7 22:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表