找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE; Nizar Touzi Book 2013 Springer Science+Business Media New York 2

[复制链接]
楼主: 鸣叫大步走
发表于 2025-3-25 06:40:58 | 显示全部楼层
发表于 2025-3-25 11:12:42 | 显示全部楼层
Solving Control Problems by Verification,o the unknown value function. Namely, given a smooth solution . of the dynamic programming equation, we give sufficient conditions which allow to conclude that . coincides with the value function .. This is the so-called .. The statement of this result is heavy, but its proof is simple and relies es
发表于 2025-3-25 14:39:10 | 显示全部楼层
发表于 2025-3-25 17:45:00 | 显示全部楼层
Backward SDEs and Stochastic Control,rol to stochastic target problems. More importantly, the general theory in this chapter will be developed in the non-Markov framework. The Markovian framework of the previous chapters and the corresponding PDEs will be obtained under a specific construction. From this viewpoint, BSDEs can be viewed
发表于 2025-3-25 21:21:27 | 显示全部楼层
Quadratic Backward SDEs,wth. In the Markovian case, this corresponds to a problem of second-order semilinear PDE with quadratic growth in the gradient term. The first existence and uniqueness result in this context was established by M. Kobylanski in her Ph.D. thesis by adapting some previously established PDE techniques t
发表于 2025-3-26 04:02:54 | 显示全部楼层
Introduction to Finite Differences Methods,g in quantitative finance. The approach is based on the very powerful and simple framework developed by Barles– Souganidis [4], see the review of the previous chapter. The key property here is the monotonicity which guarantees that the scheme satisfies the same ellipticity condition as the HJB opera
发表于 2025-3-26 07:54:23 | 显示全部楼层
发表于 2025-3-26 11:53:58 | 显示全部楼层
发表于 2025-3-26 12:51:20 | 显示全部楼层
发表于 2025-3-26 17:15:02 | 显示全部楼层
https://doi.org/10.1007/978-1-4614-4286-8backwards stochastic differential equations; dynamic programming; financial mathematics; stochastic con
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-30 10:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表