找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Optimal Control Theory for Infinite Dimensional Systems; Xunjing Li,Jiongmin Yong Book 1995 Birkhäuser Boston 1995 Algebra.Finite.calculus

[复制链接]
查看: 17081|回复: 44
发表于 2025-3-21 18:56:50 | 显示全部楼层 |阅读模式
书目名称Optimal Control Theory for Infinite Dimensional Systems
编辑Xunjing Li,Jiongmin Yong
视频video
丛书名称Systems & Control: Foundations & Applications
图书封面Titlebook: Optimal Control Theory for Infinite Dimensional Systems;  Xunjing Li,Jiongmin Yong Book 1995 Birkhäuser Boston 1995 Algebra.Finite.calculus
描述Infinite dimensional systems can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic­ plastic material, fluid dynamics, diffusion-reaction processes, etc., all lie within this area. The object that we are studying (temperature, displace­ ment, concentration, velocity, etc.) is usually referred to as the state. We are interested in the case where the state satisfies proper differential equa­ tions that are derived from certain physical laws, such as Newton‘s law, Fourier‘s law etc. The space in which the state exists is called the state space, and the equation that the state satisfies is called the state equation. By an infinite dimensional system we mean one whose corresponding state space is infinite dimensional. In particular, we are interested in the case where the state equation is one of the following types: partial differential equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book.
出版日期Book 1995
关键词Algebra; Finite; calculus; equation; function; optimization; proof; theorem
版次1
doihttps://doi.org/10.1007/978-1-4612-4260-4
isbn_softcover978-1-4612-8712-4
isbn_ebook978-1-4612-4260-4Series ISSN 2324-9749 Series E-ISSN 2324-9757
issn_series 2324-9749
copyrightBirkhäuser Boston 1995
The information of publication is updating

书目名称Optimal Control Theory for Infinite Dimensional Systems影响因子(影响力)




书目名称Optimal Control Theory for Infinite Dimensional Systems影响因子(影响力)学科排名




书目名称Optimal Control Theory for Infinite Dimensional Systems网络公开度




书目名称Optimal Control Theory for Infinite Dimensional Systems网络公开度学科排名




书目名称Optimal Control Theory for Infinite Dimensional Systems被引频次




书目名称Optimal Control Theory for Infinite Dimensional Systems被引频次学科排名




书目名称Optimal Control Theory for Infinite Dimensional Systems年度引用




书目名称Optimal Control Theory for Infinite Dimensional Systems年度引用学科排名




书目名称Optimal Control Theory for Infinite Dimensional Systems读者反馈




书目名称Optimal Control Theory for Infinite Dimensional Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:54:57 | 显示全部楼层
发表于 2025-3-22 02:47:58 | 显示全部楼层
Xunjing Li,Jiongmin Yong ein NPM in entsprechender Weise mit einem Umbau öffentlicher Dienste zu komplettieren. Bei weiterer Verfeinerung geht es hier also um das Problem bzw. die Frage, ob bzw. inwieweit es nun gerade den hier einschlägigen Vorreitern — den sog. NPM-Kernanwendern — in der Zwischenzeit gelungen ist, gewiss
发表于 2025-3-22 08:25:20 | 显示全部楼层
发表于 2025-3-22 10:16:23 | 显示全部楼层
Xunjing Li,Jiongmin Yonganz habe „den Bestand an Schulden, die den Kaufmann wirtschaftlich belasten”,. darzustellen. Zwingende Konsequenz ist, dass die bilanzielle Schuld nicht einer Rechtsverpflichtung gleichgesetzt werden darf,. sondern im Gegenteil das Bestehen einer solchen Rechtsverpflichtung weder eine notwendige noc
发表于 2025-3-22 15:31:40 | 显示全部楼层
发表于 2025-3-22 20:47:15 | 显示全部楼层
发表于 2025-3-22 21:24:40 | 显示全部楼层
发表于 2025-3-23 04:12:15 | 显示全部楼层
Optimal Control Theory for Infinite Dimensional Systems
发表于 2025-3-23 06:45:41 | 显示全部楼层
Book 1995tial equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 17:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表