找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Operator Theory, Analysis and Mathematical Physics; Jan Janas,Pavel Kurasov,Günter Stolz Conference proceedings 2007 Birkhäuser Basel 2007

[复制链接]
楼主: Awkward
发表于 2025-3-28 18:00:46 | 显示全部楼层
发表于 2025-3-28 21:13:10 | 显示全部楼层
发表于 2025-3-29 02:05:18 | 显示全部楼层
Uniform and Smooth Benzaid-Lutz Type Theorems and Applications to Jacobi Matrices, generalizations of the Benzaid-Lutz theorem (a Levinson type theorem for discrete linear systems) and are used to develop a technique for proving absence of accumulation points in the pure point spectrum of Jacobi matrices. The technique is illustrated by proving discreteness of the spectrum for a class of unbounded Jacobi operators.
发表于 2025-3-29 04:48:40 | 显示全部楼层
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/o/image/702344.jpg
发表于 2025-3-29 11:07:05 | 显示全部楼层
https://doi.org/10.1007/978-3-7643-8135-6Dirichlet-to-Neumann map; Jacobi matrix; Lyapunov exponent; Operator theory; functional model; mathematic
发表于 2025-3-29 15:00:18 | 显示全部楼层
Finiteness of Eigenvalues of the Perturbed Dirac Operator,Finiteness criteria are established for the point spectrum of the perturbed Dirac operator. The results are obtained by applying the direct methods of the perturbation theory of linear operators. The particular case of the Hamiltonian of a Dirac particle in an electromagnetic field is also considered.
发表于 2025-3-29 17:26:12 | 显示全部楼层
Trace Formulas for Jacobi Operators in Connection with Scattering Theory for Quasi-Periodic BackgroWe investigate trace formulas for Jacobi operators which are trace class perturbations of quasi-periodic finite-gap operators using Krein’s spectral shift theory. In particular we establish the conserved quantities for the solutions of the Toda hierarchy in this class.
发表于 2025-3-29 21:39:15 | 显示全部楼层
发表于 2025-3-30 01:12:18 | 显示全部楼层
发表于 2025-3-30 07:02:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表