书目名称 | Operator Theory | 编辑 | Daniel Alpay | 视频video | | 概述 | Embraces the long history, diversity and wide range of topics relating to operator theory.Explores notions such as positivity and reproducing kernel through interconnected sections.Describes multiple | 图书封面 |  | 描述 | A one-sentence definition of operator theory could be: The study of (linear) continuous operations between topological vector spaces, these being in general (but not exclusively) Fréchet, Banach, or Hilbert spaces (or their duals). Operator theory is thus a very wide field, with numerous facets, both applied and theoretical. There are deep connections with complex analysis, functional analysis, mathematical physics, and electrical engineering, to name a few. Fascinating new applications and directions regularly appear, such as operator spaces, free probability, and applications to Clifford analysis. In our choice of the sections, we tried to reflect this diversity. This is a dynamic ongoing project, and more sections are planned, to complete the picture. We hope you enjoy the reading, and profit from this endeavor. | 出版日期 | Reference work 2015 | 关键词 | Schur analysis; de Branges spaces; indefinite inner product spaces; infinite dimensional analysis; nonco | 版次 | 1 | doi | https://doi.org/10.1007/978-3-0348-0667-1 | isbn_ebook | 978-3-0348-0667-1 | copyright | Springer Basel 2015 |
The information of publication is updating
|
|