找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Operator Algebras and Quantum Statistical Mechanics; Equilibrium States. Ola Bratteli,Derek W. Robinson Book 1997Latest edition Springer-V

[复制链接]
查看: 15516|回复: 41
发表于 2025-3-21 19:59:30 | 显示全部楼层 |阅读模式
书目名称Operator Algebras and Quantum Statistical Mechanics
副标题Equilibrium States.
编辑Ola Bratteli,Derek W. Robinson
视频video
丛书名称Theoretical and Mathematical Physics
图书封面Titlebook: Operator Algebras and Quantum Statistical Mechanics; Equilibrium States.  Ola Bratteli,Derek W. Robinson Book 1997Latest edition Springer-V
描述For almost two decades this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. It describes the general structure of equilibrium states, the KMS-condition and stability, quantum spin systems and continuous systems..Major changes in the new edition relate to Bose--Einstein condensation, the dynamics of the X-Y model and questions on phase transitions. Notes and remarks have been considerably augmented.
出版日期Book 1997Latest edition
关键词Algebra; Algebras; Bose-Einstein condensation; Operator; Operatoralgebra; Physik; Quantenmechanik; Quantens
版次2
doihttps://doi.org/10.1007/978-3-662-03444-6
isbn_softcover978-3-642-08257-3
isbn_ebook978-3-662-03444-6Series ISSN 1864-5879 Series E-ISSN 1864-5887
issn_series 1864-5879
copyrightSpringer-Verlag Berlin Heidelberg 1997
The information of publication is updating

书目名称Operator Algebras and Quantum Statistical Mechanics影响因子(影响力)




书目名称Operator Algebras and Quantum Statistical Mechanics影响因子(影响力)学科排名




书目名称Operator Algebras and Quantum Statistical Mechanics网络公开度




书目名称Operator Algebras and Quantum Statistical Mechanics网络公开度学科排名




书目名称Operator Algebras and Quantum Statistical Mechanics被引频次




书目名称Operator Algebras and Quantum Statistical Mechanics被引频次学科排名




书目名称Operator Algebras and Quantum Statistical Mechanics年度引用




书目名称Operator Algebras and Quantum Statistical Mechanics年度引用学科排名




书目名称Operator Algebras and Quantum Statistical Mechanics读者反馈




书目名称Operator Algebras and Quantum Statistical Mechanics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:17:23 | 显示全部楼层
https://doi.org/10.1007/978-3-662-03444-6Algebra; Algebras; Bose-Einstein condensation; Operator; Operatoralgebra; Physik; Quantenmechanik; Quantens
发表于 2025-3-22 01:01:54 | 显示全部楼层
发表于 2025-3-22 08:19:06 | 显示全部楼层
发表于 2025-3-22 09:13:22 | 显示全部楼层
发表于 2025-3-22 14:11:34 | 显示全部楼层
发表于 2025-3-22 18:03:55 | 显示全部楼层
Operator Algebras and Quantum Statistical Mechanics978-3-662-03444-6Series ISSN 1864-5879 Series E-ISSN 1864-5887
发表于 2025-3-22 22:57:21 | 显示全部楼层
Introductionze the structural properties of the equilibrium states of quantum systems consisting of a large number of particles. In Chapter 1 we argued that this leads to the study of states of infinite-particle systems as an in it ial approximation. There are two approaches to this study which are to a large e
发表于 2025-3-23 03:05:05 | 显示全部楼层
Continuous Quantum Systems. Ihysical. One begins with the Hilbert space of vector states of the particles and subsequently introduces algebras of operators corresponding to certain particle observables. The second approach is more abstract and consists of postulating certain structural features of a .*-algebra of observables an
发表于 2025-3-23 09:21:19 | 显示全部楼层
KMS-Statesibrium states. Now we discontinue this specific analysis and describe instead various general characterizations of equilibrium phenomena. Principally, we investigate the Kubo—Martin—Schwinger, or KMS, condition briefly outlined in the Introduction and used in the calculation of the Gibbs states of t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 14:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表