找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Operational Calculus; A Theory of Hyperfun K. Yosida Book 1984 Springer Science+Business Media New York 1984 Derivative.Finite.Hyperfunktio

[复制链接]
查看: 6873|回复: 41
发表于 2025-3-21 16:57:03 | 显示全部楼层 |阅读模式
书目名称Operational Calculus
副标题A Theory of Hyperfun
编辑K. Yosida
视频video
丛书名称Applied Mathematical Sciences
图书封面Titlebook: Operational Calculus; A Theory of Hyperfun K. Yosida Book 1984 Springer Science+Business Media New York 1984 Derivative.Finite.Hyperfunktio
描述In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid­ ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside‘s operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con­ cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con­ volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mi
出版日期Book 1984
关键词Derivative; Finite; Hyperfunktion; Identity; Operatorenrechnung; algebra; calculus; differential equation; e
版次1
doihttps://doi.org/10.1007/978-1-4612-1118-1
isbn_softcover978-0-387-96047-0
isbn_ebook978-1-4612-1118-1Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1984
The information of publication is updating

书目名称Operational Calculus影响因子(影响力)




书目名称Operational Calculus影响因子(影响力)学科排名




书目名称Operational Calculus网络公开度




书目名称Operational Calculus网络公开度学科排名




书目名称Operational Calculus被引频次




书目名称Operational Calculus被引频次学科排名




书目名称Operational Calculus年度引用




书目名称Operational Calculus年度引用学科排名




书目名称Operational Calculus读者反馈




书目名称Operational Calculus读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:55:27 | 显示全部楼层
发表于 2025-3-22 00:46:45 | 显示全部楼层
Introduction of the Operator h Through the Convolution Ring Ce in the .; we shall denote the class of those functions by C[0,∞) or simply by the letter C. The convolution of two functions a = a(t) and b = b(t) of . is defined by . and we have PROPOSITION 1. a*b belongs to .; i.e., a*b(t) is a continuous function defined on [0, ∞).
发表于 2025-3-22 04:41:26 | 显示全部楼层
发表于 2025-3-22 11:02:30 | 显示全部楼层
Heat Equationdenote the ., c the ., and ρ the . of the bar. Furthermore, let the lateral surface of the bar be perfectly insulated so that heat can flow in and flow out only through the ends of the bar. If we denote by z(λ,t) the temperature at the point of the bar at abcissa λ at the instant t, then the heat equation in the bar is
发表于 2025-3-22 13:42:13 | 显示全部楼层
发表于 2025-3-22 20:24:51 | 显示全部楼层
发表于 2025-3-23 00:26:23 | 显示全部楼层
Introduction of the Operator s Through the Ring CHLet ..then,for any k = h.∈H and f ∈c,we have ..
发表于 2025-3-23 05:11:42 | 显示全部楼层
发表于 2025-3-23 05:40:00 | 显示全部楼层
Fractional Powers of Hyperfunctions h, s and These functions are respectively defined by Euler’s* integrals:
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 15:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表