找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[复制链接]
查看: 34327|回复: 61
发表于 2025-3-21 19:40:42 | 显示全部楼层 |阅读模式
书目名称Natural Language Processing and Chinese Computing
副标题13th National CCF Co
编辑Derek F. Wong,Zhongyu Wei,Muyun Yang
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th
描述.The five-volume set LNCS 15359 - 15363 constitutes the refereed proceedings of the 13th National CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2024, held in Hangzhou, China, during November 2024..The 161 full papers and 33 evaluation workshop papers included in these proceedings were carefully reviewed and selected from 451 submissions. They deal with the following areas: Fundamentals of NLP; Information Extraction and Knowledge Graph; Information Retrieval, Dialogue Systems, and Question Answering; Large Language Models and Agents; Machine Learning for NLP; Machine Translation and Multilinguality; Multi-modality and Explainability; NLP Applications and Text Mining; Sentiment Analysis, Argumentation Mining, and Social Media; Summarization and Generation..
出版日期Conference proceedings 2025
关键词Computer Science; Informatics; Conference Proceedings; Research; Applications; Information extraction; Mac
版次1
doihttps://doi.org/10.1007/978-981-97-9440-9
isbn_softcover978-981-97-9439-3
isbn_ebook978-981-97-9440-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Natural Language Processing and Chinese Computing影响因子(影响力)




书目名称Natural Language Processing and Chinese Computing影响因子(影响力)学科排名




书目名称Natural Language Processing and Chinese Computing网络公开度




书目名称Natural Language Processing and Chinese Computing网络公开度学科排名




书目名称Natural Language Processing and Chinese Computing被引频次




书目名称Natural Language Processing and Chinese Computing被引频次学科排名




书目名称Natural Language Processing and Chinese Computing年度引用




书目名称Natural Language Processing and Chinese Computing年度引用学科排名




书目名称Natural Language Processing and Chinese Computing读者反馈




书目名称Natural Language Processing and Chinese Computing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:03:35 | 显示全部楼层
发表于 2025-3-22 02:34:07 | 显示全部楼层
Contrastive Learning-Based Sequential Recommendation Modeltems in sequential recommendation. The proposed contrastive learning framework effectively captures intra-sequence item transition patterns and inter-sequence dependencies among items. Empirical evaluations on real-world datasets show that our model significantly outperforms advanced baseline models
发表于 2025-3-22 06:29:08 | 显示全部楼层
发表于 2025-3-22 10:25:05 | 显示全部楼层
Enhancing Complex Causality Extraction via Improved Subtask Interaction and Knowledge Fusionween the two ECE subtasks. Besides, we design a knowledge fusion mechanism to fuse knowledge in the two modalities. Furthermore, we employ separate decoders for each subtask to facilitate complex causality extraction. Experiments on three benchmark datasets demonstrate that our method achieves state
发表于 2025-3-22 13:44:59 | 显示全部楼层
Mathematical Reasoning via Multi-step Self Questioning and Answering for Small Language Modelslti-step reason in a self questioning and answering way and answer each sub-question in a single step iteratively. Experiments on current mathematical reasoning tasks demonstrate the effectiveness of the proposed approach.
发表于 2025-3-22 19:08:58 | 显示全部楼层
High-Quality Distractors Generation for Human Exam Based on Reinforcement Learning from Preference Fment learning, we build and train a reward model to evaluate the quality of individual distractors. Combining the reward model with a diversity evaluation metric, we design an objective function and further train the fine-tuned model using reinforcement learning. Experiments show that the DGRL, afte
发表于 2025-3-23 01:10:23 | 显示全部楼层
发表于 2025-3-23 03:38:37 | 显示全部楼层
MANet: A Multiview Attention Network for Automatic ICD Codingre integrated to effectively fuse these multiview features, generating more informative and discriminative representations. Extensive experiments conducted on the popular MIMIC-III and MIMIC-IV-ICD9 datasets demonstrate the superiority of our proposed MANet over state-of-the-art methods. On MIMIC-II
发表于 2025-3-23 07:02:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 16:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表