用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerische Probleme und ihre Lösung mit Taschenrechnern; Jon M. Smith Book 1981 Springer Fachmedien Wiesbaden 1981 Algorithmen.Approximati

[复制链接]
楼主: VER
发表于 2025-3-23 11:44:37 | 显示全部楼层
发表于 2025-3-23 14:47:21 | 显示全部楼层
eure, Statistiker, Physiker, Chemiker, Systemanalytiker und Lehrer. Bei Verwendung der richtigen numerischen Methode wird der elektronische Taschen­ rechner zu einem wesentlichen RechenhilfsmitteL Es werden "mikronumerische Metho­ den" diskutiert, die dem Leser helfen, den Taschenrechner optimal zu
发表于 2025-3-23 19:18:00 | 显示全部楼层
Numerische Funktionsauswertung mit einem Taschenrechner, vierten und fünften Grades, Methoden zur numerischen Auswertung transzendenter Funktionen, Methoden zur Berechnung ebener und sphärischer Dreiecke und Verfahren zur numerischen Auswertung von Funktionen mit komplexen Variablen. Die auf dem Taschenrechner auszuwertenden Formeln und Gleichungen sind in der hierzu günstigsten Form geschrieben.
发表于 2025-3-23 23:13:39 | 显示全部楼层
发表于 2025-3-24 02:33:59 | 显示全部楼层
978-3-528-08380-9Springer Fachmedien Wiesbaden 1981
发表于 2025-3-24 09:12:45 | 显示全部楼层
Der programmierbare Taschenrechner,sführung eingegangen wird, soll hier ein Oberblick über die allgemeinen Grundlagen der Programmierung von Rechenmaschinen, unabhängig davon, ob es nun Rechner oder Computer sind, gegeben werden. Einzelheiten in der Programmierung spezifischer Rechner sind besser zu verstehen, wenn man mehr über die allgemeinen Grundlagen weiß.
发表于 2025-3-24 11:38:45 | 显示全部楼层
,Einführung in den Aufbau des Taschenrechners,In diesem Kapitel werden die Unterschiede der mathematischen Konzeption der verschiedenen Taschenrechner und die für Berechnungen auf einem Taschenrechner gebräuchlichen, immer wie der auftretenden mathematischen Begriffe erörtert.
发表于 2025-3-24 15:47:13 | 显示全部楼层
http://image.papertrans.cn/n/image/669404.jpg
发表于 2025-3-24 21:15:34 | 显示全部楼层
https://doi.org/10.1007/978-3-663-14002-3Algorithmen; Approximation; Auswertung; Berechnung; Funktionen; Geometrie; Länge; Mathematik; Matrizen; Matri
发表于 2025-3-25 00:10:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-11 04:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表