找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Treatment of Integral Equations / Numerische Behandlung von Integralgleichungen; Workshop on Numerica J. Albrecht,L. Collatz Book

[复制链接]
楼主: Odious
发表于 2025-3-26 23:04:49 | 显示全部楼层
发表于 2025-3-27 02:22:09 | 显示全部楼层
发表于 2025-3-27 07:45:34 | 显示全部楼层
,Ein Extrapolationsverfahren für Volterra-Integralgleichungen 2. Art,thod is based on the existence of an asymptotic expansion in even powers of the stepsize h for the midpoint-rule; for evaluating the occuring integrals the Gaussian quatrature rule is used. Convergence and stability properties of the method are investigated, and a few numerical results are given.
发表于 2025-3-27 10:39:38 | 显示全部楼层
The Simultaneous Use of Differential and Integral Equations in One Physical Problem,ntial and integral forms and each should be employed simultaneously in different regions of the domain. This in turn encourages engineers to use different methodologies in each region instead of a single methodology as commonly done for the entire region.
发表于 2025-3-27 17:04:08 | 显示全部楼层
Mesh Refinement Methods for Integral Equations,of problems. The object of this paper is to consider the application of those methods to the solution of nonlinear integral equations including eigenproblems for integral operators. This paper will also include a report on some numerical experiments with these methods.
发表于 2025-3-27 21:11:55 | 显示全部楼层
发表于 2025-3-27 22:47:32 | 显示全部楼层
Die Numerische Behandlung von Integralgleichungen Zweiter Art Mittels Splinefunktionen,function spaces with one-dimensional domain, but the results obtained for this special case can be generalized. Further, the applicability of the method to integral equations with weak singular kernel is investigated.
发表于 2025-3-28 02:58:41 | 显示全部楼层
,The Numerical Solution of Laplace’s Equation in Three Dimensions—II,ation over U is solved numerically using Galerkin’s method, with spherical harmonics as the basis functions. The resulting numerical method converges rapidly, although great care must be taken to evaluate the Galerkin coefficients as efficiently as possible.
发表于 2025-3-28 06:59:35 | 显示全部楼层
发表于 2025-3-28 13:42:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 22:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表