找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Methods of Approximation Theory, Vol. 7 / Numerische Methoden der Approximationstheorie, B; Workshop on Numerica L. Collatz,G. Me

[复制链接]
楼主: 卑贱
发表于 2025-3-25 07:14:41 | 显示全部楼层
Einige Bemerkungen zur Numerik der multivariaten Approximation,e for boundary value problems). Nonlinear problems become more and more important for applications, and it would be desirable to make more research in this area for which a list of open problems is given.
发表于 2025-3-25 08:20:55 | 显示全部楼层
Numerical Aplications of Operator Pade Approximants,ompletely following the ideas of the univariate theory. These operator Padé approximants prove to be efficient tools for the convergence acceleration of multidimensional tables (q=1), for the solution of a system of nonlinear equations (p=q), for the numerical approximation of multivariate functions
发表于 2025-3-25 12:37:21 | 显示全部楼层
Real vs. Complex Rational Chebyshev Approximation on Complex Domains,on f satisfying . by a rational function of type (m,n) with either real or complex coefficients. For m = 0 and n ≥ 4, the error in complex approximation can be arbitrarily much smaller than the error in real approximation. In contrast, for (m,n) = (0,1) the complex error can be better by at most a c
发表于 2025-3-25 16:28:56 | 显示全部楼层
Interpolation and Instant Approximation,tle effort: Main principle FFE (Few Function Evaluations). The remainder estimate based on one degree of approximation will be refined by introducing several such degrees (in combination with estimates for Chebyshev coefficients). Next we investigate the question whether the interpolation polynomial
发表于 2025-3-25 22:59:57 | 显示全部楼层
发表于 2025-3-26 02:15:47 | 显示全部楼层
Euler-Frobenius-Polynome,path for the Euler-Frobenius polynomials. These polynomials are well known from the theory of attenuation factors in numerical Fourier analysis. It is shown that the contour integral approach to the Euler-Frobenius polynomials allows to deduce in a simple way all their fundamental properties.
发表于 2025-3-26 07:13:29 | 显示全部楼层
发表于 2025-3-26 10:30:07 | 显示全部楼层
发表于 2025-3-26 14:03:52 | 显示全部楼层
板凳
发表于 2025-3-26 20:05:35 | 显示全部楼层
第4楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 13:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表