找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Methods for Mixed Finite Element Problems; Applications to Inco Jean Deteix,Thierno Diop,Michel Fortin Book 2022 The Editor(s) (i

[复制链接]
查看: 21255|回复: 37
发表于 2025-3-21 16:13:05 | 显示全部楼层 |阅读模式
书目名称Numerical Methods for Mixed Finite Element Problems
副标题Applications to Inco
编辑Jean Deteix,Thierno Diop,Michel Fortin
视频video
概述Develops a general framework‘for the numerical solution of mixed problems.Discusses preconditioned iterative methods.Provides applications to various problems
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Numerical Methods for Mixed Finite Element Problems; Applications to Inco Jean Deteix,Thierno Diop,Michel Fortin Book 2022 The Editor(s) (i
描述.This book focuses on iterative solvers and preconditioners for mixed finite element methods. It provides an overview of some of the state-of-the-art solvers for discrete systems with constraints such as those which arise from mixed formulations...Starting by recalling the basic theory of mixed finite element methods, the book goes on to discuss the augmented Lagrangian method and gives a summary of the standard iterative methods, describing their usage for mixed methods. Here, preconditioners are built from an approximate factorisation of the mixed system...A first set of applications is considered for incompressible elasticity problems and flow problems, including non-linear models...An account of the mixed formulation for Dirichlet’s boundary conditions is then given before turning to contact problems, where contact between incompressible bodies leads to problems with two constraints...This book is aimed at graduate students and researchers in the field of numerical methods and scientific computing..
出版日期Book 2022
关键词Finite Element Methods; Iterative Methods; Augmented Lagrangian; Incompressible Elasticity; Contact Prob
版次1
doihttps://doi.org/10.1007/978-3-031-12616-1
isbn_softcover978-3-031-12615-4
isbn_ebook978-3-031-12616-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Numerical Methods for Mixed Finite Element Problems影响因子(影响力)




书目名称Numerical Methods for Mixed Finite Element Problems影响因子(影响力)学科排名




书目名称Numerical Methods for Mixed Finite Element Problems网络公开度




书目名称Numerical Methods for Mixed Finite Element Problems网络公开度学科排名




书目名称Numerical Methods for Mixed Finite Element Problems被引频次




书目名称Numerical Methods for Mixed Finite Element Problems被引频次学科排名




书目名称Numerical Methods for Mixed Finite Element Problems年度引用




书目名称Numerical Methods for Mixed Finite Element Problems年度引用学科排名




书目名称Numerical Methods for Mixed Finite Element Problems读者反馈




书目名称Numerical Methods for Mixed Finite Element Problems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:28:08 | 显示全部楼层
Numerical Methods for Mixed Finite Element Problems978-3-031-12616-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 01:16:49 | 显示全部楼层
Jean Deteix,Thierno Diop,Michel FortinDevelops a general framework‘for the numerical solution of mixed problems.Discusses preconditioned iterative methods.Provides applications to various problems
发表于 2025-3-22 08:37:09 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/n/image/669075.jpg
发表于 2025-3-22 12:28:02 | 显示全部楼层
https://doi.org/10.1007/978-3-031-12616-1Finite Element Methods; Iterative Methods; Augmented Lagrangian; Incompressible Elasticity; Contact Prob
发表于 2025-3-22 15:38:59 | 显示全部楼层
发表于 2025-3-22 20:50:35 | 显示全部楼层
Iterative Solvers for Mixed Problems,We now come to our main issue, the numerical solution of problems (.), (.) and (.) which are indefinite problems, although with a well defined structure.
发表于 2025-3-22 21:13:02 | 显示全部楼层
发表于 2025-3-23 04:35:12 | 显示全部楼层
发表于 2025-3-23 09:16:02 | 显示全部楼层
Conclusion,We hope to have shown that solving mixed problems can be accomplished efficiently. This work is clearly not exhaustive and we have indeed tried to open the way for future research. We have relied as building bricks on rather classical iterative methods.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 03:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表