找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Methods for Conservation Laws; Randall J. LeVeque Textbook 1992Latest edition Springer Basel AG 1992 CFL condition.average.compa

[复制链接]
楼主: PLY
发表于 2025-3-27 00:35:10 | 显示全部楼层
发表于 2025-3-27 01:20:11 | 显示全部楼层
发表于 2025-3-27 08:33:46 | 显示全部楼层
发表于 2025-3-27 10:09:15 | 显示全部楼层
发表于 2025-3-27 13:42:13 | 显示全部楼层
Linear Hyperbolic Systems can solve the equations explicitly by transforming to characteristic variables. We will also obtain explicit solutions of the Riemann problem and introduce a “phase space” interpretation that will be very useful in our study of nonlinear systems.
发表于 2025-3-27 21:00:52 | 显示全部楼层
Shocks and the Hugoniot Locus eigenvalues λ.(.) <…< λ.(.) and hence linearly independent eigenvectors. We choose a particular basis for these eigenvectors, {.{.)}., usually chosen to be normalized in some manner, e.g. ∥.(itu})∥ ≡ 1.
发表于 2025-3-27 23:13:39 | 显示全部楼层
The Riemann problem for the Euler equationst the details are messier. Instead, I will concentrate on discussing one new feature seen here, contact discontinuities, and see how we can take advantage of the linear degeneracy of one field to simplify the solution process for a general Riemann problem. Full details are available in many sources,
发表于 2025-3-28 04:52:54 | 显示全部楼层
Godunov’s Methodbtained a natural generalization of the upwind method by diagonalizing the system, yielding the method (10.60). For nonlinear systems the matrix of eigenvectors is not constant, and this same approach does not work directly. In this chapter we will study a generalization in which the local character
发表于 2025-3-28 06:44:01 | 显示全部楼层
Nonlinear Stabilityonverges then the limit is a weak solution. To guarantee convergence, we need some form of stability, just as for linear problems. Unfortunately, the Lax Equivalence Theorem no longer holds and we cannot use the same approach (which relies heavily on linearity) to prove convergence. In this chapter
发表于 2025-3-28 11:19:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 18:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表