找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Mathematics and Advanced Applications ENUMATH 2019; European Conference, Fred J. Vermolen,Cornelis Vuik Conference proceedings 20

[复制链接]
楼主: Daguerreotype
发表于 2025-3-28 16:42:35 | 显示全部楼层
High Order Whitney Forms on Simplices and the Question of Potentials,unctions with assigned gradient, curl or divergence in domains with general topology. Three ingredients, that bear the name of their scientific fathers, are involved: the de Rham’s diagram and theorem, Hodge’s decomposition for vectors, Whitney’s differential forms. Some key images are presented in
发表于 2025-3-28 19:17:44 | 显示全部楼层
发表于 2025-3-29 02:16:53 | 显示全部楼层
发表于 2025-3-29 03:56:55 | 显示全部楼层
发表于 2025-3-29 11:08:08 | 显示全部楼层
发表于 2025-3-29 11:53:33 | 显示全部楼层
发表于 2025-3-29 19:34:09 | 显示全部楼层
Model Order Reduction Framework for Problems with Moving Discontinuities,l equations. The main ingredient is a novel decomposition of the solution into a function that tracks the evolving discontinuity and a residual part that is devoid of shock features. This decomposition ansatz is then combined with Proper Orthogonal Decomposition applied to the residual part only to
发表于 2025-3-29 22:38:48 | 显示全部楼层
发表于 2025-3-30 02:14:09 | 显示全部楼层
A Structure-Preserving Approximation of the Discrete Split Rotating Shallow Water Equations, of this slice model provides insight towards developing schemes for the full 2D case. Using the split Hamiltonian FE framework (Bauer et al., A structure-preserving split finite element discretization of the rotating shallow water equations in split Hamiltonian form (2019). .), we result in structu
发表于 2025-3-30 05:59:10 | 显示全部楼层
Iterative Coupling for Fully Dynamic Poroelasticity,rove its convergence in the Banach space setting for an abstract semi-discretization in time that allows the application of the family of diagonally implicit Runge–Kutta methods. Recasting the semi-discrete solution as the minimizer of a properly defined energy functional, the proof of convergence u
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 19:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表