找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Integration IV; Proceedings of the C H. Brass,G. Hämmerlin Conference proceedings 1993 Springer Basel AG 1993 integration.Mathema

[复制链接]
楼主: 相似
发表于 2025-3-26 21:15:12 | 显示全部楼层
Some Problems involving Orthogonal Polynomials,nger (1966) for the error in the associated Gaussian quadrature formula. In the later part, we consider the Rodrigue’s function U. associated with the polynomial p. in the orthogonal sequence over (-1,1) with respect to w. Some properties of U. are proved, and a number of conjectures, with some supp
发表于 2025-3-27 02:53:58 | 显示全部楼层
发表于 2025-3-27 07:05:46 | 显示全部楼层
发表于 2025-3-27 09:39:05 | 显示全部楼层
Quadrature rules derived from linear convergence accelerations schemes,s exponentially. If we also require the integrand to be analytic on a strip along the real axis, the trapezoidal approximation can be shown to be very accurate, provided some simple regularity assumptions are satisfied.
发表于 2025-3-27 16:41:44 | 显示全部楼层
发表于 2025-3-27 17:53:57 | 显示全部楼层
The Canonical Forms of a Lattice Rule,o an algorithm to obtain a canonical form of a rule of prime power order. The number of possible distinct canonical forms is derived, and this is used to determine the number of integration lattices having specified invariants.
发表于 2025-3-28 00:32:55 | 显示全部楼层
发表于 2025-3-28 04:41:11 | 显示全部楼层
Integrating Singularities using Non-uniform Subdivision and Extrapolation,ion strategy used in many adaptive algorithms. The strategy can be applied to vertex singularities, line singularities and more general subregion singularities. The technique turns out to have good numerical stability properties.
发表于 2025-3-28 07:28:19 | 显示全部楼层
发表于 2025-3-28 12:13:33 | 显示全部楼层
A new lower bound for the number of nodes in cubature formulae of degree 4 n + 1 for some circularlFor two classes of integrals it will be shown that the number of nodes of cubature formulae of degree 4. + 1, . > 1, will not attain Möller’s lower bound. Thus in these cases that bound has to be increased by 1.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 16:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表